PonSp’éc;:)é

ECHNOLOGIES

PolySpace™ for Ada
Documentation

How to Contact The MathWorks

www.mathworks.com

comp.soft-sys.matlab
www.mathworks.com/contact TS.html

suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Web

Newsgroup
Technical Support

Product enhancement suggestions
Bug reports
Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

For contact information about worldwide offices, see the MathWorks Web site.

Release 2007a+
Revision 4.2 vA

2/292

http://www.mathworks.com/
http://www.mathworks.com/contact_TS.html
mailto:suggest@mathworks.com
mailto:bugs@mathworks.com
mailto:doc@mathworks.com
mailto:service@mathworks.com
mailto:info@mathworks.com

TABLE OF CONTENTS

1. PolySpace documentation set

2. Getting started

2.1. General Requirements

2.2. Step 1: PolySpace Client - Setting up and launching an analysis of a single Ada file
2.2.1. Analysis prerequisites
2.2.2. Setting up a PolySpace Client analysis
2.2.3. PolySpace Client: running the analysis
2.2.3.1. Parsing errors during preliminary PolySpace analysis stages
2.2.3.2. Progression of the analysis
2.2.3.3. End of the analysis

2.3. Step 2: PolySpace Viewer - Exploration of results
2.3.1. Modes of operation
2.3.2. Downlaod results into the Viewer
2.3.3. Analyzing of PolySpace results in "Expert" mode (“example.adb”)
2.3.3.1. Procedural entities view (RTE View)
2.3.3.2. Colours in the Source code view
2.3.3.3. More examples of run-time errors
2.3.3.4. Advanced results exploration
2.3.3.5. Miscellaneous
2.3.4. Methodological asssitant
2.3.4.1. Assistant dashboard
2.3.4.2. Choose a methodological assistant
2.3.5. Report Generation

2.4. Launch PolySpace Remotely
2.4.1. Steps of Launching
2.4.2. Management of PolySpace analysis in remote: the PolySpace Spooler
2.4.3. Batch commands
2.4.4. Share analyses between accounts

2.5. Summary

3. Working with analysis setup

3.1. Compile errors

3.1.1. OS and target issues
3.1.2. Unit analysis

3.2. Stubbing errors
3.2.1. Manual vs. Automatic Stubbing
3.2.2. Automatic stubbing
3.2.3. Pragma assert
3.2.4. Volatile

3.3. Advanced setup
3.3.1. Reduce oranges step by step

Release 2007a+ 3/292
Revision 4.2 vA

3.3.1.1. Vary the precision level
3.3.1.2. Apply chosen coding rules
3.3.1.3. Increase the number of red and green checks
3.3.1.4. Apply some functional constraints to variables
3.3.1.5. Tuning PolySpace parameters
3.3.2. Variables
3.3.2.1. Float rounding
3.3.2.2. Expansion of sizes

4. Working with results review

4.1. Basics: prerequisite being able to review PolySpace results

4.1.1. Propagation of colors

4.1.2. What is the message and what does it mean?

4.1.3. What is the Ada explanation?

4.1.4. Review run time errors: Fix red errors

4.1.5. Review dead code checks: why is grey code interesting?
4.1.5.1. Functional bugs can be found in grey code
4.1.5.2. Note on structural coverage

4.1.6. How to conclude an orange review
4.1.6.1. What is an orange?
4.1.6.2. What are the different sources of oranges?
4.1.6.3. How to determine the cause of one orange?

4.2. Automatic Methodology

4.3. How to find a maximum number of bugs within an hour reviewing oranges:

selective orange review
4.3.1. How?
4.3.2. Why?
4.3.3. In practice...
4.3.4. Step by step
4.3.5. Which category of checks should | choose first?
4.3.6. Exhaustive orange review at unit phase
4.3.6.1. Without coding rules
4.3.6.2. With coding rules

4.4. Coloured source code for Ada
4.4.1. Non-Initialized Variable: NIV/NIVL
4.4.1.1. Pragma interface/import
4.4.1.2. Type access variables
4.4.1.3. Address clauses
4.4.2. Division by zero: ZDV
4.4.3. Arithmetic Exceptions: EXCP
4.4.4. Scalar and Float Underflow/Overflow : UOVFL
4.4.5. Scalar and Float Overflow: OVFL
4.4.6. Scalar and Float Underflow: UNFL
4.4.7. Attributes check: COR
4.4.8. Array length check: COR
4.4.9. DIGITS value check: COR
4.4.10. DELTA value length check: COR
4.4.11. Static range and values check: COR
4.4.12. Discriminant check: COR
4.4.13. Component check: COR
4.4.14. Dimension versus definition check: COR

Release 2007a+ 4/292
Revision 4.2 vA

4.4.15.

Aggregate versus definition check: COR

4.4.16.

Aggregate array length check: COR

4.4.17.

Sub-Aggregates dimension check: COR

4.4.18.

Characters check: COR

4.4.19.

Accessibility level on access type: COR

4.4.20.

Valid variable: COR

4.4.21.

Explicit dereference of a null pointer: COR

4.4.22.

Accessibility of atagged type: COR

4.4.23.

Power Arithmetic: POW

4.4.24.

User Assertion: ASRT

4.4.25.

Non Terminations: Calls and Loops

4.4.26

4.4.25.1. Non Termination of Call: NTC

4.4.25.2. Non Termination of Call due to entry in tasks

4.4.25.3. Known Non Termination of Call: k-NTC

4.4.25.4. Non Termination of Loop: NTL

4.4.25.5. Sqgrt, sin, cos, and generic elementary functions

. Unreachable code: UNR

4.4.27

. Value on Assignment: VOA

4.4.28

. Inspection Points: IPT

4.5. Advanced results review

4.5.1. Purpose of -continue-with-red-error option

4.5.2. Checks on procedure calls with default parameters

4.5.3.

INIT PROC procedures

5. Get more from PolySpace: Insert it into your development process

5.1. PolySpace usages

5.2. Standard development process

5.3. Rigorous development process: introducing tools and coding rules

54.Aq

uality/qualification approach

5.5. Code acceptance criterion

6. Advanced

6.1. PolySpace setup

6.1.1. Can an application without “main” be analysed?

6.1.2. Modelling tasks, interruptions and events

6.1.2.1. Scheduling model

6.1.2.2. Modelling synchronous tasks

6.1.2.3. Interruptions and asynchronous events/tasks

6.1.2.4. Are interruptions maskable or preemptive by default?

6.1.3. Shared variables

6.1.3.1. Critical sections

6.1.3.2. Mutual exclusion

6.1.3.3. Access pattern

6.1.3.4. Rendez vous

6.1.3.5. Semaphores

6.1.4. Miscellaneous

6.1.4.1. Mailboxes

6.1.4.2. Atomicity

Release 2007a+
Revision 4.2 vA

5/292

6.1.4.3. Priorities

6.2. PolySpace results analysis

6.2.1. Integration bug tracking

6.2.2. How to find bugs in unprotected shared data

6.2.3. Dataflow analysis

6.2.4. Cost and benefits of an exhaustive orange review
6.2.4.1. Costs and Benefits
6.2.4.2. Method

6.2.5. PolySpace analysis duration
6.2.5.1. An ideal application size
6.2.5.2. Why should there be an optimum size?
6.2.5.3. By selecting a subset of code
6.2.5.3.1. Subdivide according to data-flow
6.2.5.3.2. Subdivide according to real-time characteristics
6.2.5.3.3. Subdivide according to files
6.2.5.4. What are the benefits of these methods?
6.2.5.4.1. When the application isincomplete
6.2.5.4.2. Considering the effects of application code size

7. Options description

7.1. GENERAL
7.1.1. -prog program-name
7.1.2. -date date
7.1.3. -author author-name
7.1.4. -verif-version verif-version
7.1.5. -voa
7.1.6. -keep-all-files
7.1.7. -continue-with-red-error
7.1.8. -continue-with-existing-host
7.1.9. -allow-unsupported-linux
7.1.10. -sources "files" or -sources-list-file file_name
7.1.11. -extensions-for-spec-files and -ada-include-dir
7.1.12. -results-dir directory
7.1.13. -pre-analysis-command file or "command"
7.1.14. -post-analysis-command file or "command"

7.2. TARGET/COMPILER

7.2.1. -target target-name
7.2.2. -OS-target OperatingSystemTarget

7.3. COMPLIANCE WITH STANDARDS

7.3.1. -storage-unit number

7.3.2. -base-type-directly-visible

7.3.3. Permissiveness/Strictness
7.3.3.1. -permissive
7.3.3.2. -continue-with-in-out-niv
7.3.3.3. -strict
7.3.3.4. -no-automatic-stubbing
7.3.3.5. -continue-with-all-niv

7.4. POLYSPACE INNER SETTINGS

7.4.1. -main main_subprogram name
7.4.2. -main-generator

Release 2007a+ 6/292
Revision 4.2 vA

7.4.3. Stubbing

7.4.3.1. -import-are-not-volatile

7.4.3.2. -export-are-not-volatile

7.4.3.3. -init-stubbing-vars-random

7.4.3.4. -init-stubbing-vars-zero-or-random
7.4.4. Assumptions

7.4.4.1. -ignore-float-rounding

7.4.4.2. -known-NTC procl[,proc?2],...]]
7.4.5. Others

7.4.5.1. -orange-analyzer

7.4.5.2. -extra-flags option-extra-flag

7.4.5.3. -ada95-extra-flags extra-flag (Ada95 only)

7.5. PRECISION

7.5.1. -from verification-phase

7.5.2. -to verification-phase

7.5.3. -0O(0-3)

7.5.4. -modules-precision mod1:0(0-3)[,mod2:0(0-3)[,...]]
7.5.5. -array-expansion-size number

7.5.6. -path-sensitivity-delta number

7.5.7. -variables-to-expand varl[,var2|,...]]

7.5.8. -variable-expansion-depth number

7.6. MULTITASKING (PolySpace Server only)

7.6.1. -entry-points stri[,str2[,...]]
7.6.2. -critical-section-[begin or end] "procl:csl[,proc2:cs2]"

7.6.3. -temporal-exclusions-file file name

7.7. BATCH OPTIONS

7.7.1. -server server_name_or_ip[:port_number]

7.7.2. -h[elp]

7.7.3.-v | -version
7.7.4. -sources-list-file file_name

7.8. COMPLETE EXAMPLES

8. Appendix

8.1. Glossary

8.2. What is static verification?

Release 2007a+
Revision 4.2 vA

7/292

PolyS pace

Back to table of contents Next

1. PolySpace documentation set

This document represents all the documentation required to use PolySpace tools, irrespective of

whether you are a beginner or an experienced user. It covers both PolySpace Client and PolySpace
Server.

Note that this document covers both Ada83 and Ada95 language. In the following it only refers to Ada
language. Also, when the document invokes pol yspace- ada command, you have to refer to

pol yspace- ada95 command with same characteristics.

Are you looking to analyse:

. One package?

s Do you want to perform vour first analysis and results review?

o Is it possible for you to restrict data (functional) ranges in the package?

o Do you have issues with setting up or launching an analysis?

s When reviewing results, is your main concern

« Productivity? Do you wish to focus on productivity by finding bugs quickly?

« Do you want only to review orange using assistant mode, expert mode or given
by the automatic methodology?

« Reliability? Do you want to examine every result PolySpace provides?

« Or do you want to find a compromise between productivity and reliability?

. Multiple packages?
o Do you have issues related to:
= Analysis launching (setup)?

« Common setup issues

« Advanced setup

« Multitasking issues?

« Shared variables?

s Do you want to find bugs efficiently in the results?

Release 2007a+ 8/292
Revision 4.2 vA

o Does your analysis takes place on a server, and do you want access the queued
analysis?
Detailed contents

. PolySpace Installation. Please refer to Pol ySpace_i nstal | ati on_gui de. pdf and
Pol ySpace_Li censes_install ation_gui de. pdf located on the CD-ROM (in <CD- ROW>
\ Docs\ I nstal |) and in the <Pol ySpaceCommon Di r >/ Docs.

. "Setting up an analysis" details all features of PolySpace which are relevant when preparing to
analyse your code. It is a comprehensive reference manual for the launching of analyses. It
contains all information related to the launching of an analysis, error messages at different
phases of an analysis, and means at setup-time to reduce ill founded warnings (oranges).

. "Reviewing results" details all features of PolySpace which are relevant when reviewing your
results. It is a comprehensive reference document, giving typical examples for each error
category, offering advice on getting started with your first results, advising which colours to look
at with the automatic methodology, and explaining how to find bugs efficiently.

. "PolySpace and your development process" gives guidance in the use of PolySpace as an
integral part of the development process. It is presented as a narrative, and will help proficient
users of the tool to get the best possible use from it. It presents different development
processes, and shows how PolySpace might best be integrated in each case.

. "Advanced" includes multitasking information for PolySpace Verifier, hints and tips for quicker

PolySpace Verifier analyses, and a complete description of those features which are used in
order to launch a PolySpace analysis.

Release 2007a+ 9/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2. Getting started

Related subjects:
2.1. General Requirements

2.2. Step 1. PolySpace Client - Setting up and launching an analysis of a single Adafile
2.3. Step 2: PolySpace Viewer - Exploration of results

2.4. Launch PolySpace Remotely

2.5. Summary

Release 2007a+ 10/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.1. General Requirements
Computer Configuration

Please refer to PolySpace installation manual for the minimum hardware requirements to follow step by
step this tutorial on a Windows PC.
Timing:
The installation of PolySpace products takes around 5 minutes (see the complete installation guide
is available from the PolySpace installation CD-ROM in \ Docs\ | nst al |
\ Pol ySpace_I nstal | _Gui de. pdf).
The first step of this tutorial takes about 15 minutes.
The second step of this tutorial takes about 15 minutes.

Installation Guide

Note: If the PolySpace products are already installed on your computer, please go directly to step 1.
The PolySpace products are delivered on a CD-ROM. There are 4 modules:

1. PolySpace Client for analysing single files. Note that this module is available with the

icon “Pol ySpace Launcher”.
2. PolySpace Server for multi-file or composite analysis. Note that this module is available

with the icon “Pol ySpace Launcher”.

3. PolySpace Viewer is the graphical user interface to explore the results computed by
PolySpace Server or PolySpace Client.

4. PolySpace Spooler is the graphical interface to manage analysis sent in remote.

Please refer to PolySpace installation manual for installing the PolySpace products.

Structure of this document

Once the installation is done, you can launch PolySpace by using the following icons that were placed
on your desktop PC:

PolySpace Spooler FolvSpace Viewer
r Shiortout Shortcut
Y] - e 2 KB

This Getting Started will focus on the following three exercises using PolySpace Client, the Viewer and
the launching of an analysis remotely:
In Step 1 we will analyze a simple package “exanpl e” by using PolySpace Client
In Step 2.we will review the results obtained during Step 1 by using PolySpace Viewer
In the last step, instead of performing a PolySpace Client or Server analysis locally, analysis will be
sent remotely to a server.

PolySpace Launcher
Shortout
2 KB

Release 2007a+ 11/292
Revision 4.2 vA

Release 2007a+ 12/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2. Step 1: PolySpace Client - Setting up and launching an
analysis of a single Ada file

This paragraph describes a basic file analysis. It focuses on the analysis of the “exanpl e” package,
which is included in the PolySpace installation directory and located at:
<Pol ySpacel nstal | D r >\ Exanpl es\ Deno_Ada\ sour ces\ exanpl e. adb.

The PolySpace analysis process is composed of three main phases:

First, PolySpace checks the syntax and semantic of the analyzed file(s). However, as PolySpace is not
associated to a particular compiler, benefits of this phase are triple for the analysed source code: Ada
Standard compliance, portability and maintainability.

Then, PolySpace seeks the main procedure. If none is found, PolySpace Client will generate one
automatically. This function will call all the functions which are declared in the specification of the
package.

Finally, PolySpace proceeds with the code analysis phase, during which run time errors are detected
and highlighted in the code.

Related subjects:
2.2.1. Analysis prerequisites
2.2.2. Setting up a PolySpace Client analysis
2.2.3. PolySpace Client: running the analysis

Release 2007a+ 13/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents

2.2.1. Analysis prerequisites

Any analysis requires the following:
PolySpace products and its related license file and dongle correctly installed;

Source code files (in this case “exanpl e. adb”) and all others specifications that it may directly or
indirectly requires.

Release 2007a+
Revision 4.2 vA

14/292

Previous

TECHHNOLOGIES

PonSpace

Back to table of contents

2.2.2. Setting up a PolySpace Client analysis

“2 Double-click on the PolySpace Launcher icon (release number could not be same):
PolySpace Launcher

Shortout
2 kKB

Next

A dialog box window appears proposing to launch one of the following categories of analysis mixing the type of

product and the language:

The language to select depends on available installed PolySpace products.
The Graphical Interface of PolySpace analysis Launcher is displayed as below after having chosen Client

Launcher and Ada95:

Release 2007a+
Revision 4.2 vA

PolySpace Client / Server Launcher

Select a product

' Client Launcher

{7 Server Launcher

OF.

Select a language

L
[L1+

e AdaB3/8dass

Cancel

15/292

o - ' Tawrrr i v b e pierherd e I_l": |_:.g',|"_|

fogra sEm [alat B]
N sy S L_\“I-“m
Sy
i gl - crmpiee
il ol ol 11
Pty S Py elirgs
P ki Ty
ks iy
P sl ol lirey | sl o bake e |
ik bbbl | -3 bemmzsons - Sarcmpes-Biler]
Porpalls Dawciony | -ismaltd-din|
L=
ERCS
] L)
I ST AT I T T T
Lelob i M e o £ Ll M o
E"--lﬂ'.}u o 1 g ii_.l: !_Il
i'.:u:
of ra F]
Mlﬂhﬂ T g Ty e —

“2 Click on Fi | e/ New Pr 0j ect to start an analysis:

-] PolySpace Client
F=8 Edit Tools Help

- Mew project
ff? Open project

B 5ave project [Click here to create a new project] =& = 0
Save as new project e Path
¥ Quit Chrl+0

2 f required, Select Ada95 as the language and click on “OK”.

The PolySpace Client for Ada95 New Project window opens (see figure below). It contains four sections:
1. Atthe very top, the title bar, which contains usual icons and menus;

2. Top leftis the list of files to analyze, along with include and results directories;
3. Top right is the set of options associated with the analysis that will be processed;
4. Finally the bottom area allows following the execution and progress of the analysis.

Release 2007a+ 16/292
Revision 4.2 vA

."‘ﬁlr‘ulh‘l Lihwrd Ter KcaTs - Plew Frojeci

b
T N | 1 Lagrch From T I:.-=| '.?_I
LR | f-l :. al FE
Tie s v = — Wil Wikical e
prewts v e |
L]
L e i Bt | g
e T —
Bagrew ke | L
Frvae T rwm ann 1] | .-a-n- L]
£ roemren wifects of s srrgrrsenin | = ! .
B ol Herr b | s
iy e i e sl e delecied | [| < v rm T i) A
A el P me o Ll B A
i oL Y O L L dcebuiic [| [arin Uik Eu s
L T e

E v Cosgmarcs wilh dwros

b deechorms |- i -]
| # Pyl e g

| i Femcoan.
| # MEARajiag
Pilen moclemainrn | - Gl oms-Eag - Speri - T b d6R] "k o]
Tipriailts [raClony | -cosol te-d42e]
© Woaipace Prisiy [=]
A
s ey || = [
I | | I | | re
01 50 I 0 o) 0 00 I B [EITT R
1 Tarl
EL’FIF Loy ewcrimne iy 0 E
h‘:li
¥ raia

e
“2? Start by updating the result directory name by clicking on the browse button :

sults Directory [-cesulta-dic]

CPolySpace_Resuls

This directory is the one where PolySpace Client will store the results of the analysis. By default, PolySpace
will store results in “C: \ Pol ySpace_Resul t s”. This is the directory that we will choose for the analysis.

“2 Now, Click on the El button (right of the “New Pr oj ect ” label). It opens the “Pl ease sel ect a file”
window, from which you can select one or several files to analyse.

Release 2007a+ 17/292

Revision 4.2 vA

H Flease select a file

Lok __|marcas

| mriey 1ty
| B e am

¥ yradion s

+ S oS I

¥ Arc BTy il

'!"u.:u 1

) T e

]ty il

sehal J" el mre ["ada] Filen
[Recinnn sdnm ety
Tarce by |-sEroes|

[[=]

Wy e W 0 M et (e o e s e

@O

[wechores: bo inciede [-schs-rohucds-de |

[#] [#]

B

=

[|

“2 Inthe “Look in” section, click on

\ sour ces”. A list of files appears in the box (<Pol ySpacel nst al | Di r > corresponds to C: \ Pol ySpace

W

and select “<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_Ada

\ Pol ySpaceFor Ada in the figure above).

“? Select “exanpl e. adb” and click on EI inthe “Source files [-sources]”section (bottom left) of the
window. The file is now listed among the source files to be analyzed.

B Please select a file

L i | eurcan

] weviey i) ks
| B e am |

¥ ymreiten acki

| mraives iy

= Arr By A

'!"u.:u il

) Yafad il

4
] trinan sy

il J s mre ["ada) Fien
[Fecirnn sinmectwes
Srarce W |-aanves]

] [+

Wik pint e (AR et B R e e T

i

b NN v W =

Dwmchores: ko inciue [-sels-raok sie-de |

(=] [+]

=

Carenl |

“2Click on |l—| to go back to the “Pol ySpace Client for Ada95 — New_Proj ect” window.

Note: it is also possible to drag a directory or source files and drop it them directly in the “Fi | e Name/

Absol ut e Pat h” part (top left of PolySpace Client) without using the “Pl ease sel ect a fil e” window.

Release 2007a+
Revision 4.2 vA

18/292

PonSpace

TECHNOLOGIES
Back to table of contents Next

Previous

2.2.3. PolySpace Client: running the analysis

“2 Click on to start the analysis. Alternatively, you can click on the button in the title bar to run
PolySpace Client with the current setting.

The window titled “Save t he proj ect as”opens. You can decide where to store the configuration information
related to the analysis. Here, create a file called “denp” and save it under PolySpace result directory. The full name

of that file will be “denvo. dsk”.

B Save the project as ...

|ﬂf| FolySpace Results

iy Recent
Cocuments

by Computer

g Session idertifier | demol

Rty Metwark
Places Filez of type: i*.dsk

“2 Click on |I| to go back to the “Pol ySpace dient for Ada95 — New Proj ect” window and click

again on ¥ Eeste |0 hroceed forward.

Release 2007a+ 19/292
Revision 4.2 vA

.l-"-:l:.i-,-.r ¢ Ciienl Par Lda¥ O WalyS parr Henaitaideme dik

Fim O3 Toch Help

R B 0 i 3 ¢ H = w
—— ~ - Wy
e am ..'_':.I.-.I .I Soar abuaiein .i"'_“il
Tl e Pai !-'““m — —
| i £ Wty Caace Py fpacel DA Eewspma e | (T 3 '_ . .
]
S it [i
S § ALY _dll-
S inify b del
P | e g 0 B LA i
F o aoTaanl oF Lt i1 e i} o
rumy ol e il Sy Ll ki i N
e EoL T e] || <rrdram sfteed meor
Corfwrsm i Sw currend corfiourstion | !‘ R e e M) Tl
o B v (s e] | el Ll alirve i o
|8 Trgebi o
= = {8 e Al e
T T AT S TN T s
= | % Prossmn
| bl nabrg
Filrn xS [-85 LOCrL Ong- S - apas -2 L len] " el
Foriilt & [0 bRy [- reriidfaedic |
[l_
Bomaider wroidhyrr] [= =L ST
K- [=om [o= [[= [= |
LR 000 Eoqeeliy o [Lgvai] gl s
El.’-mﬂl.nq. pEL LT DL 11. Iﬂ.
Tl &
..f FullLig: B8¥ Dnpabase wpedats

LD

FEGFa BRUNGT THp#A . wis
FucrdRaany Tashs. wis
FildEilig PeidliiviTy.¢ds
Peisfdddiird i wirekoin add
Frosesnifsd arcay. sda

wa
v Dytabase wpelace darm
'

e o

Oeer cine féc Databaoss updsts: J.8cead, Bluw # 0.0

A progress report is displayed in the bottom part of the graphical interface, indicating that the analysis is being

b

performed. The

Note: you may press the Stop Execution button

part of the current tutorial.

button is also grayed out.

_ I €3 Stop Executtion |

- in order to interrupt the analysis but it is not

Related subjects:

2.2.3.1. Parsing errorsduring preliminary PolySpace analysis stages

2.2.3.2. Progression of theanalysis

2.2.3.3. End of the analysis

Release 2007a+
Revision 4.2 vA

20/292

y Q{ HHOLOGIES
Previous Back to table of contents Next

2.2.3.1. Parsing errors during preliminary PolySpace analysis stages
After some checks, PolySpace will show an error message:

Message E

L
@ Yerification process failed

Let's try and understand why we get this error message.
First possible cause for the error message: Hardware recommendation

If this happens, please verify whether your computer fits the minimal hardware configuration requirements
described in the general requirements. Moreover, a message like the following one is displayed in the bottom
part of the graphical interface:

| Firocus | ﬂ
— ST — = m————— S e A SN - I
| ¥ . i Ll rpid Totw
ot 9000 (0 190 (0 00 OoG0Ea 1901 0 00 Rl =TT
H\:mv«.:; Ly 1 T k) :41 et 'l:i
s e
h"‘"ﬂ WerlfYLng hidt OHRLlEetish ...
¥ ruiog Bewsry > M0 § L LE0EN
- Tuwg > 1E0 | 0 [E736 Fhi
Tiage b= IVEAN Ro o= presa *
ENE pore avalishie 1 1]

Seginl pert coml amedlakle g O
Sacial PpEfE coal svallaBle 3 o

T 1 SCEOT GErared

Frpsre Faund shen vecifying et configu=zation.

Wom wupn fix ches P=fores leapching sPain
ST UPE ~TOnTimus - th-nd L pting - Baet w

ac iy war e gamad

“2 Type “host " in the “Search i n the | og: " box and click on @ to search if the error corresponds to a
hardware recommendation problem.

If the error message corresponds to the one shown above and in order to continue analysis, you can either:
upgrade your computer to meet the minimal requirements, or

use the —cont i nue-wi t h- exi st i ng- host option which overrides the initial check for minimal hardware
configuration. To do so, please follow the following steps:

“2 To set up the —cont i nue- wi t h- exi sti ng- host option, please type “cont i nue” in the Search internal

; - -
. Searchintemal name from the selscted fine - | continus .
name from the selected line =~ ' - top right box -

“2 Then click on =1 1t will show all options containing “cont i nue” in the set of options part below:

Release 2007a+ 21/292
Revision 4.2 vA

Saaarcih mismsd navs from T opeleciad e - ClniTes |'J._'||l|3_?-!
e o Fbirral P
Arefrais opiem

= Cipreernl

L [Vi Proioct | hog

[] | EERE: | e

el | Bl b
Fromect wer peon |10] | bverifovmion
E s 78018 O Slab i day el - T

.-llwp-ﬂ-‘h'l
:—an.ﬂ-wE‘uN—nrl-
Corfires with Be curenl Sorvipulior L e - DT

| LorErs een O an undueporied Line: Sabnibubos _llnu- (et ey Tl T
| A T ey
| & ot waln Thanaiendn
B Foby s innes selng

2 Frecimonaoirg

& MLAEadkre

e B Rl DR

e e o eedd gy e cefecieds

I

2 Check the box _ = in the “Value” column that is associated to the “- cont i nue- wi t h-
exi sting-host” line as shown below.

“2 Itis also recommended to select the —cont i nue-wi t h-red- error option. Indeed, “exanpl e. adb”
contains — on purpose - code with some definite errors, later called red errors. This option allows you to continue
the analysis even if red errors are detected in previous passes.

Cordirass even [red erroes are defectad | Leortinume- with-red-arror
Condirnes with the curment configueation I Lcm.m-eﬁm-mn

Second possible cause for the error message: Information about Header files

Another cause of error may be that PolySpace Desktop misses some package specifications.

Femote arstysis [| |m 4]
orer:on | lewtoon | lomcion | Lewdiox | Lewdow |

LRl 0ol D a0 o0 120000 O Do i LLALARY o] a0 a0
B compse Log Seanch in B log |_'l_'l_|
h‘éﬂd:
@ Terifying _pac sain
(5] PullLog Verifying CUnTANe BrEok

~» Verifier foumd an ereor in . fedample.adb:l3c14: "runtime error (spec)®™ depends on “types [Epec)”

-» Werifier found an ercor in . fexample.adb:ldcld: "puntime error (spec)™ depends on "asnsitivity (spec)™
=3 Werifier found &m erpor 1n . fexanple.adhrldcld: "runtime ereor (spec)™ depenids om “pidata (spec)™

=3 Verifier found an erEcE in . Jexample. adh:l3rl4! "pantise ereor (body)” depends on “runcime erLor (spec)”
> Werifler found an &EECED 10 . Sexauple, adb:E3: 14! "EunCise arEc: (Jpec]T depends on Toandos (apec]”

=== Werlfiler has dececced compalacion sErce(a) in the code.
Fleaae corgect ches and Launch the apalyala agalb. e

In the tutorial, as shown above, some specification are missing: “t ypes”, “sensi ti vi ty”, “pkdat a”,
‘runti me_error”and “randoni. To fix theses compilation errors, you need to indicate where to find these
specifications. As PolySpace is not associated with one particular compiler, it is mandatory to indicate where

library files are stored.
In our “exanpl e. adb” file analysis, the related specifications are located in the same directory as the adb file:

<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_Ada\ sour ces.

2 Openthe “ Pl ease sel ect a file” window by using button (right of the “ denb. dsk” label in the top
right of the interface):

Release 2007a+ 22/292
Revision 4.2 vA

E Flease select a file ﬁ(_

Lixcdi i _lzarcan = I‘E'l Ig H !-'!
- § by [l o
SRR ey Cormpratm
JACEERE D Cha Sy [
P roricioes s Pl
] }
r;.-mu _ | Py Spac o oo Rt
e L E e
¥ nin ks || Car,_hchi
#] s sy
] bvpe indn
SRS Tl S R T e =

|| W m mbede o

Fuined Thed [dinn | e o B e |- il |

[a]
il |

“? Select “<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_Ada\ sour ces”, where the specifications are
located.

“2 Click on EI inthe“Directories to include [-ada-include-dir]”section, and then close the

window using |l—|

Notes: All specifications are in this folder only. It is also possible to drag a directory and drop it directly in the
“include directories [-ada-include-dir]” part (top left of PolySpace Client) without using the
“Pl ease select a file”window.

At the end, a last compilation error remains:

Konsand = cgte-0el =FeT0 ~fal -2a81 -TaVE -Loa =guidt -Epdl -feodx -fok -fac <fet -Tea

[FacLiying _poc_msin
[FerLEying Dumbine_ ¢fgas

~¥ Verifiss foumd wn #rcor in . Jensapis.adbzl]
= ¥eilll4E D&Ed b &ffof kA
=% Wepifiep foumd sl #FELOE

114 “runcime_soror {bedyl™
oFEdRp it R ELT 142 <
in . iemple. szl iz ™

fepanady on CrUnTiNe FLCOE [ETC)T
Sipasdd B0 C rEOGATAVELY [EpEC)T
fapazdy an “wpiootil [apeci™

fuRtlvd ol (F5eL]™
smsicivicy {Fpec]™

Teriliacr has defecied
- Flease cOUrein whem abd

compilation mxrocia] in Ehe oodd.
Al T ahAdYILE &IRLK,

It means that “pkutil” specifications are missing even the —ada- i ncl ude- di r directory added just before.
Searching for “pkut i | ” specifications, in the “sour ces” directory, we can see that it is defined in the “uti | .
adb” file. Changing the following option “Fi | es ext ensi on” by “—ext ensi ons-for-specs-file *. ad

[sab] ” allows to indicate that specifications can be found in *. ada, *.ads and *. adb file extensions.

Release 2007a+
Revision 4.2 vA

23/292

y Egzuuomm ES
Previous Back to table of contents Next

2.2.3.2. Progression of the analysis

“2 Click on to restart the analysis.

Some results may have already been written in the “C: \ Pol ySpace_Resul t s” directory, because of a previous

click on . Therefore a window opens to check whether you want to overwrite in this directory or not:

@ The directary C:\PolvSpace Results already exists,
[]
Some files might be overwritten, Do wou wank to continue ?

[Yes _H Mo][Cancel]

In our example, this is what we want to do. Click on , if it happens.

Note: closing the PolySpace Desktop window will not stop the PolySpace analysis. If you wish to stop it, click on

l @ stop Execrtion] (a window of confirmation follows the click). If the window is closed without stopping the
analysis, it continues in background. Opening again PolySpace Desktop with the same project automatically
updates the analysis with its current status.

The progress bar allows to follow the progress of the analysis:

I Levell @ 0% I Leval2 0% l Laveld | (9] Lewvald @ 0% Total
00:00:08 000012 00: 0000 00:00:00 00:00:00 00:00:00 00:00: 26
A progress report may be obtained by clicking on 'ﬁt_“"‘_"m?_ for the compilation phase, or
| FurLog for the full analysis in the low level window. Click on ES‘“ to get other pieces of

information about current analysis (list of options, stubbed functions, functions used during main construction,

checks found after each phase, etc.). Click on the icon to refresh the summary.

Release 2007a+ 24/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.2.3.3. End of the analysis

When the analysis ends, PolySpace proposes to review the results:
® Yerification process completed.
L]
Do vou wank ko launch PolySpace Wiewer 7

|_ Ik l | Zancel |

If you Cick on “OK’, go to the next section of the tutorial to viewthe

resul ts. Ifyou click on , and if no other analyses are running, you can access the results
via the " icon in the title bar.

Release 2007a+ 25/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3. Step 2: PolySpace Viewer - Exploration of results

This step illustrates how to explore analysis results that were generated by either PolySpace Client or
PolySpace Server. We review the results of the analysis of “exanpl e. adb” performed during Step 1

using the following icon:
PolySpace Yiewer
Shortout
2 KB

If the |I| button has been clicked at the end of the previous analysis (see previous section),
PolySpace Viewer automatically opens results. Please go directly to "analysing of PolySpace results”.

Related subjects:
2.3.1. Modes of operation

2.3.2. Downlaod resultsinto the Viewer

2.3.3. Analyzing of PolySpaceresultsin " Expert" mode (“ example.adb”)
2.3.4. Methodological asssitant

2.3.5. Report Generation

Release 2007a+ 26/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.3.1. Modes of operation

The first time The PolySpace Viewer is opened, a sub-window will appear after the splash screen of the
viewer. It is aimed to warn user about different modes of operation. User has to choose between
launching the Viewer in an “expert” mode or in an “assistant” mode.

& New feature ;F_| = E|

Plemse selecd

[The Wiswer b two modes of operation
[Chongpe: beetwreen

I Thie ey penewr adarianl weeed,

|I Oir the mpert Viewve mode

[The ranear assisian] helps pou o seect and mimage the checiis 10
I!:ur Tl

| Tt wndl b bl b0 eelect the tesmber of checkcs Lo Be nenswned and
fthe "beet® subset will be sorbed ool for fou by PolySpace The
(¥iewer wall then pade you through these selecied checks

[} ot rocd clizpobiry Thas s e g

| Espertmods | | Assmient moos |

The mode will define the reviewing process of checks highlighted during an analysis:
. In"Expert node”: The Viewer is opened in a mode where all checks can be seen. The

number, the order and the categories of checks can be reviewed can be chosen by the user

himself (See next section).
. In"Assi st ant node”: the reviewing rules for an Ada analysis results follows a methodology

selected by PolySpace. It concerns the “best” subset of checks sorted out for user. The
PolySpace Viewer will then guide user through these selected checks. First selected checks
concern the Automatic Methodology.

“2 For the need of this tutorial, please untick “Do not di splay this nessage agai n” and then
click on “Expert node”.

Note: Even if the user has chosen one mode it is easy in one click to change the mode inside the
PolySpace Viewer.

Release 2007a+ 27/292

Revision 4.2 vA

PonSpace

TECHNOLOGIES
Back to table of contents

Previous

2.3.2. Downlaod results into the Viewer

After having clicked on “Expert node” the PolySpace Viewer window looks like the figure below:

B PolySpace Viewer
Fil Edt Took Wiskws Help

S W o W » N [T
b 4] r "R - =
S e pOgTERE St - Pra..]
CFabelh e Te i Lacae | K i
i P el e B R ik Pl I" .
.M ol .!

" Variables View It mCall Tree View

il frp 4

o by L]
btsmar tpiman ||
Fraied 1R I'e

TECHNOLOGIES

PonSpace

|!L"'I|||..|‘~ i wiLh mE

| Pramte pabect 5 eet = e fie wim the Fi pen bustan o kon

“2 Click fil e>open to load result files. If you did not perform the analysis, you can still review the results by opening the

following file:
<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_Ada\ RTE_px_0O2_Deno_Ada_LAST_RESULTS.rte

2 Using the “Fi | e>Open” menu, select the following file located in “C: \ Pol ySpace Resul ts”.

28/292

Release 2007a+
Revision 4.2 vA

. Please select a file

{2 PalySpace_Resuts v FoBE

Look in

Wy Compuber

£ ALL
) PobySpees.Dod

[RTE_p0_02_Cortrol_Dats_Flow_Ansbysis e
RTE_pt_02_Safety_Analysizs_Level_{ rte
RTE_p2_02_Salely_Arabysts_Level 2 rte
RTE_p3_02_Safety_Anabysiz_Level_3rte
fid RTE pa_02_Satety_analysis Level_d rte

¥ RTE _px_ 02 Maw Progect LAST RESULTS Me

Fite name: [E;pxﬁﬁﬁ.ﬁﬂﬁmﬁér_ﬁfﬂﬁﬂﬂ |
Fles of type: | rte v| [_concer |

“2 Then click on M to proceed with further steps
Note: The RTE_px_O2_Deno_Ada_LAST_RESULTS. rt e is a sort of “link” on the best analysis in term of precision. This analysis

is represented by RTE p4 (2 _Saf ety Anal ysis_Level 4. rte file. Lower level files represent lower precision analysis.

Release 2007a+
Revision 4.2 vA

29/292

PonSpace

TECHNOLOGIES
Back to table of contents Next

Previous

2.3.3. Analyzing of PolySpace results in "Expert" mode (“example.adb”)

After loading the results, and PolySpace Viewer window looks like below:

B PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_proj_LAST_RESULTS.rte
Fil Edt Took Wiskws Help
S @ v o oAl W b see s ST B e

b o N ome oo BRoem e JE s S om e om owm e

(S e DROGRESS Court - o,

e] o LMl |

v e (V0) . -I.. -

i ey R .|

= =
Prine e L3) L x |3 N O BCall Tree View
—1 Eﬁ k] E - Lint - r
e {1 vanabies

F RUNTME_ERROS BS)32 [3 -:‘I

-
0 ety

i ADA - 4 |® PUNTINE_ERROR BETA
R — ¢ | PUNTINE_ERROR BIG 1 o et
& BRI (2 Gt (3

o iter bvtnes 4| |
FLINTME_ERRORESPEC |

SEMSITRATY

e

=] et o smmrtinn

PonSpace

TECHNOLOGIES

it partnerslip with cnes o

[2 ‘Waglng B a cammand

1. On the left is the Procedural entities view (or RTE view). It displays the list of packages which have been analysed or

used during the analysis (specifications).
2. Inthe bottom right area is the source code view with coloured instructions. Each operation checked is displayed using

meaningful colour scheme and related diagnostic:

« Red: Errors which occur at every execution.

+ Orange: Warning — an error may occurs sometimes.
Grey: Shows unreachable code.

e Green: Error condition that will never occur.

3. The two windows just below the tool bar concern details of a currently reviewed check (when the check has been

selected):
[TP ——— ton pa_
|t crmct seiected ra o [
frik: ranvirvend [rib b raresires ri] ria L]
S nallakeity ndcatos réa ni

&]

4. The top right area is used for display-iﬁg both control and data flow results. You can switch from one view to the other by
using the “W ndows” menu:

Release 2007a+ 30/292
Revision 4.2 vA

B PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_proj_LAST_RESULTS.rte

":E ::.n

loha ¥ G Assidant

LT
Switch 1o Variablas view [L Bl o

Switch 1o Call Tree wiey Yertical

Related subjects:
2.3.3.1. Procedural entitiesview (RTE View)

2.3.3.2. Coloursin the Sour ce code view
2.3.3.3. More examples of run-timeerrors
2.3.3.4. Advanced results exploration
2.3.3.5. Miscellaneous

Release 2007a+ 31/292
Revision 4.2 vA

PonSpace

TECHMNOLOGIES
Previous Back to table of contents Next

2.3.3.1. Procedural entities view (RTE View)

Each package and underlying functions in the RTE view is colorized according to the most critical error found:
« In black color: The packages specification has been used to perform analysis
* Inred color: The package is red; one or more definite run-time errors have been found in it.

“2 Click once on the = left of “RUNTI ME_ERROR’ to find out more about this package.

“RUNTIME_ERROR” is expanded and the list of functions defined within “RUNTI ME_ERRCR” is displayed. The
functions in red or grey have code sections that need to be inspected (PROCEDURE_ZDV, SQUARE_ROOT, etc.) first
because they are definite diagnosis of PolySpace (either runtime errors or dead code).

H PolySpace Yiewer - C:\PolySpace Results\RTE_px_02_proj LAST_RESULTS.rte
Pie Ede Took Windoe iob

] L o T’ W - 1 ey '_:_' ',:,' T lagas W o aaatan
] o B oow omoe JER oo e B mer B e e o e e
Coxhng 1w progreEs Count Fro, Y WO DRECE DuFTERIY BETH
10 T Aniilkal il F
fri earbtrvried il 1 v (o) M L) [
L ¢ el y W i e I e =
o p;
[— AEEA R B Variables View = Call I— u.ﬁ" E
Lk proy 35 g 1 imriiag 2 ionis
: _ DS A E.ﬂ-plq ¥ RUNTME_ERRCR
i p # RUNTIHE_ERROR BETA = B o
RFIRETE LOCP 160
| & RUMTIHE _ERRDOE BIG
& WubE{R 105
10
100
= TCECAIRE i al 100
100G [3 #
F i 1680 r.. "E_' 'ﬁ
¥ DOUARE R hle] -
00| 4 -] packags rupntClise ereor 18
- a precedurs BAinATE)
10 and rumties eEESE)
‘ &7 11
rui] 1z
FROCECURE BTUB o 13 packags body EuntiEs aEroE i
- 14
=L Ll 15 == Procedurs sSTubbad
o PEOATA a 18 procedurs Proceduce Btubi(f : Float))
¥ RPN a 17
F‘LN"!\.'E_EF‘FDF‘SEF'EC a 13 ;'—Il'l-\.'r.l.-:-h bl-'lbll s oz J.Il'l:-ﬁ-\':l-tl':- FELUENn 1RT&J9E 18
g L 141
£ BEMSITMTY o -1z} ‘;11. [5= 0) then
F =21 Pt UER () | e
] ey g B ewamiple sdb FLEMME_ERRCR Lirm 11 Cakimin unkreren
] 4] 2] %], 20 provide mforman | | on
The columns (21, 11, | =*1 _*1..)) provide information about run-time errors found in each function:
The ﬂ column indicates the reliability of the code (level of proof),
The i] column indicates the number of definite run-time errors or reds,
¥4
The _] column indicates the number of warnings or oranges (that may hide run-time errors that do not occur
systematically),
Release 2007a+ 32/292

Revision 4.2 vA

The ﬂ column indicates the number of safe operations or greens

The ﬂ column indicates the number of unreachable instructions or grey code sections.

Let's have a look at some error found by PolySpace in the analyzed package.

First example of runtime error found by PolySpace: Memory Corruption
“2 Click on = to expand “I NFI NI TE_LOCP “ to find out more about the red error. It displays a list of red, green, and
orange symbols, featuring the complete list of code areas that PolySpace checked within the “I NI FI NI TE_LQOOP”
function inside package RUNTI ME_ERROR.

@ Mew_Project
[+ ADA
[+ PEDATA
[+ RANDOR
[H RUHNTIME_ERROR
H C
[H FIBOMACCI
= INFIMITE_LOOPR
' I
WA
~ UOWFL.Z
~ UOWFL:
~ 04

“2 Click on the red “NTL. 0” item - which stands for Non-Termination of Loop -, to precisely locate this error in the
source code. The bottom right section is updated showing the location of the “NTL. 0" item.

Release 2007a+ 33/292
Revision 4.2 vA

EPolySpace Viewer - C:\PolySpace _Results\RTE_px_02_proj_LAST_RESULTS.rte

Filh it Took Wirddws Help
3 W Cul . 1{ E L8 i ™ i '_:_' ‘E .- ! LY L3 -,"'nunw
RS R e O e o PBRoam e T s U oo o ovm e
g rere [OETE S Cinird . P :mmm-rl'nn!_u{\‘:ﬁ-wl:'ln:mm
£ WL i devmimeiedd il nl'__nlh-e- [] _|1.r| | X
01§ Pl B e el _l:u: | |:|_ 1o T
i RS e i Ll
m]
| §
1
[FRe P
Cracesr rehe w4 7| 1 farlablers i '-:I BECall Tree Yiew
proj 85] — — To
= RUNTME_ERROR 05 i . oEm * BUNTIME_ERROR IFRITE LOOP
| 1] b RAKND
g " [RUNTIME_ERROR EETA iy o OM FANDOM
= WEBMITE LOOR nil a bry o
MFRITELOC ! ! i | RUNTIVE_ERSOIR BIG) P RUNTME_ERROR MY ABS
i - i mi e ¥ FUNTME_ERROCR MYAES
o T | gL b RUNTME_ERROR PECURSION
o
-
o wample, adb
. MAIKR TE] 1 114 end MHon_Infinite_Loop:
oy T 115
R 116 == Infinite loop
! 117 procedure Infinite_loop im
PROCEDURE_Z fod L 118 X : integer = 1;
¥ RE M CALLER | [l 119 ¥ 3 integerc == 2;
100 120 Eeagin
= 121 isop
1 1 ;
I 122 axit when ® < 0
_f-o ROOT_C08 1o 4 123 if (Randsm.randsm > 0) then
70 124 ® o:® (x4 myvabe (k))/ /myvabe (k) == % is alweays positive
i 125 and ifi
126 and logsp:
- b y i
2 127 == thim <ode s#ction im unreachablae
PROCEDURE_ETLE] - 17R Baprmdan dwl ¢
- {
b ./ Lo

[e Saurcg fE grampby 360 FUNTME_ERFUR MFINTE_LOOF NTLD Lne 171 Cokmn

“2 Click on red loop in the source code at line 121. An error message is opened:

B2 runTiME_E... [2 B[]

N "example adk" line 121 calumn 6
iSource code
laop

o

he loop never termimnates

Indeed, the condition to exit the loop is that “x” becomes a negative value.

121 loop

122 exit when x < 0;

123 if [(Random.random > 0) then

124 X = (¥ + wyabsix))/wyabs(x); -- ® 1z always positive
125 end if:;

l1Z6 end loop;

But according to the formula, “x” will always be a positive value. So, the loop cannot terminate.

Second example of runtime error found by PolySpace: Unreachable code
2 Select “UNREACHABLE_CODE” in the RTE View. You can see that the division“z : = x y” is unreachable (gray
colour on the check) because of the non satisfied Boolean condition: “ X" is never negative when evaluating “ x<0” .

Release 2007a+ 34/292
Revision 4.2 vA

PolySpace has detected some dead code.

Release 2007a+
Revision 4.2 vA

164
170
171
17&
173
174
175
176
177
174d
179
180
151
182
153
1284

-— Here we demohstrate Polyipace Verifier's ability to
-- identify unteachahle zections of code due to the
-— wvalue constraints placed on the wvariables.

brocedure TUnreachahle Code iz

X i integer := Random.random;
¥ & integer := Randon.random;
Z : Integer:
begin

if (x = w] then

X =X ¥

if (x =< 0) then

Ei=H /T

end if:

end if:

end Unreachahle Code;

35/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.3.2. Colours in the Source code view

Each operation checked is also displayed using meaningful colour scheme and related diagnostic in
the source code view as links:

* Red: A link to the error message associated to the error which occurs at every
execution.

e Orange: Alink to an unproven message — an error may occur sometimes.

» Grey: A link to a check shown as unreachable code. The error message is in grey.

. : A link to a VOA (Value on Assignment) or an error condition that will never
occur.

 Black: Represents some comments, source code that does not contain any
operation to be checked by PolySpace in terms of run time errors and optimized operations, e.
g.x := 0.

 Blue: Text highlighting the keyword “pr ocedur e” and “f unct i on”.

* Underligned blue: Alink to a global variable in the “Global variable View”. In the next
figure (see next paragraph), Bet a is an example of this kind of global variable.

Release 2007a+ 36/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.3.3. More examples of run-time errors
Unlike most other testing techniques, PolySpace provides the benefit of finding the exact location of

run-time errors in the source code. Below are some examples that you can review with PolySpace
Viewer.

In an First example of the second set: Arithmetic error
“2 Click on # to expand “SQUARE ROOT” function. You can see the source code view in the bottom
right.
You can also display the call tree for that function by using the “Windows” menu (see previous
paragraph).
“SQUARE_ROOT” is called by MAINRTE function. It is displayed in the “Call tree view” window (right of

the top right section).
“SQUARE_ROOT” calls “RANDOM r andont (automatically stubbed function),

“SQUARE_ROOT _CONV” (from RUNTIME_ERROR package) and “SQRT” (from the standard library).

151 -- The table prowided below the example showszs the domain of
152 -- wvaluez for the expreszzions in the exanple.

153 procedure Aguare Boot conw (alpha @ in float; ¥ @ out long float) i3
154 begin

155 ¥ := [l.53 + cos (long float(alpha)))/5.0;

136 end Jgquare Root conw;

157

158 Eeta : Lonyg Float;

159 procedure Sguare Boot is

1a0 Alpha : Float := Random. random;

15l Gamma : long float;

162 begin

163 stmare Root conv (Alpha, Beta);

led Beta := Beta - 0.75;

1as Gamma := sgrt(Beta); -- always sgrtinegative numbher)
lag end Zcuare Root;

167

The green sections into the source code view are error-free but the red (sgr t) is an issue that needs to
be fixed. Indeed, when the local float variable gamra is computed in the line “gama=sqrt (beta —

0. 75) ; “, the operation will cause a run-time error, as the parameter passed to “sqrt ” is always
negative.

Note: using —voa option at launching time, PolySpace can help more suitably by giving information of

Release 2007a+ 37/292
Revision 4.2 vA

range on scalar assignment

Second example of the second set: Non-Infinite loop
“2 Select “NON_| NFI NI TE_LOOP” in RTE View. The function is fully green: it means that the locale
variable x never overflows, even if the exi t condition of loop deals with y that is smaller than x.

PolySpace confirms that the function always terminates.

104 procedure Non Infinite Loop (X :
105 cur @ Integer :=0:
106 begin

107 X = 0;

103 loop

102 exit when x » big;
110 cur = cur + Z;
111 X o= ocur JOE;

11= end loop:

113 X 1= Cur / 1l00;

114 end Non Infinite Loop:
11k%

out Integer)

is

Release 2007a+
Revision 4.2 vA

38/292

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.3.3.4. Advanced results exploration

You can filter the information provided by PolySpace to focus on the type of errors you wish to
investigate.

. . . Hiph | &l Cptny. .
There are pre-defined composite filters : : “land T that you can choose depending on your

development process. Click on the | ___I button to get all the “red” and “grey” code sections. It is mainly
used during the earliest development stages to focus quickly on critical bugs. Theses filters are
accessible through a combo list:

H PolySpace Yiewer - C:\PolySpace Results\RTE_px_02_proj_LAST_RESULTS.rte

Fili Eo Took Wredmes el
i LE] -+ E L 1 . '.:. -_.'_' P i mantid
x P T S P - = R
ar dul

iy revers priEeE ol Prec 1 i clesh CLETERDY DT L ,

p ke W o e fi alm
Hir [T

D i v 1AR0 B drin TR fid = " ’

ELN el | el Wl 08 Vo ol -l [irdatrad

“? To illustrate the use of these filters, we will focus on the Square Root function that we have

examined in the previous section. Click on!___'to reduce the information checks related to

“SQUARE_ROOT”.
- EOlARERAGY

~ WOAD
«F WOAZ
i EMCPS

This list of acronyms - for type of operations checked - shows what PolySpace automatically analyzed

for you. The ! ! level highlights checks that could cause a processor halt, memory corruptions or
overflows.

2 Clickon || mode which is the default mode. Select again “RECURSI ON’ in the “Procedural
entities” view and then, click on = to get the list of the checks.
-
0D
03
L
+ wOAD
w Z001

Release 2007a+ 39/292
Revision 4.2 vA

- . : figh

To get the comprehensive list of operations checked by PolySpace, you can switch to " mode. You
may also want to use filters to focus on particular categories of errors. Those filters are located at the
top of the PolySpace Viewer window:

B PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_proj_LAST_RESULTS.rte
Flla Edit Took Windows Help

- - ‘J ll.- e
o B v oo oq B b e o 0 [ke ¥ 68 Amtant
T l';‘l:-[| pav, zow o B oem opow BV e TUT wre game WmL e ows

Note: When the mouse pointer moves on the filter, a tool tips gives its definition.

“2 Click on :FT!H'TE (top of the window) to suppress all checks and click on] You will get list of
checks containing only ZDV (Zero DiVision) reds, or greens:
PROCEDURE_STUB
[E] PROCEDURE_ZDW
¥ Z0vs
E !"'-'::. :.!i"\:-.-:
"“_I_F ZhOhs
~ Z0W11
RECURSION_CALLER

“? Click on | ."f. (top of the window) to suppress green code sections. You will get a reduced list of
checks reds, and grays:

PROCEDURE_STUB
[F PROCEDURE_Z0W
1 Z0vs
E RECURSIOHN
.--E'p =
RECURSION_CALLER

Release 2007a+ 40/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.3.3.5. Miscellaneous

w . : : :
The ™ icon gives access to the PolySpace Manual. All views have a pop-up menu (right click on
mouse).

? Close the PolySpace Viewer window by clicking on the upper right ﬂ symbol (PolySpace Viewer
can also be closed using “File>Close”).

Release 2007a+ 41/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.4. Methodological asssitant

After a first navigation into the PolySpace Viewer, some simple questions remain:

. Do all checks need to be reviewed?

. What are the checks to review?

. How many?

. What is the best order?
The Methodological assistant is here to answer to all theses questions: It helps to select and manage the checks
to be reviewed. It selects a “best” subset and sorts out them. The Assistant mode in the PolySpace Viewer will
then guide through these selected checks.

2 If the PolySpace Viewer is still open, close it by clicking on the upper right Eﬂ symbol, open it again, load
same results and chose “Assi st ant ” mode.
After having loaded the results in “Assi st ant " mode, PolySpace Viewer window looks like below:

B PolySpace Yiewer - C:\PolySpace_Results\RTE_px_02_proj_LAST_RESULTS.rte
Fils Ecdt Tookh Wrdows kel

o M e e W o b | see ol | 8 T | e
W wioeflagy dor i L .:ll—: Ellup‘.:r-h.u H & w
g v pIOOrees Court - P, :“H-:-me-c--:-.--m]
R L] T
I Pl | R R T e |
EEERL R S e e |
O
|
Pr bl e & “"| T | |!Jl:u
oy 100 k-
BiTME_ERROR 100
& PRl
A4 v : Ir PLNTIVE_ERROR BETA
* PHDAT A o ¥ RUNTIME_ERROR BIC (=3 Cnilw k
ST Y] o
RUNTME_ERRORESFED o
= SEMSITRATY o

PonSpace

TECHNOLOGIES

I parinershp w

CT'H'-'H-'. 5

|_ 3 ‘Wiydng i g cammand

Related subjects:

Release 2007a+ 42/292
Revision 4.2 vA

2.3.4.1. Assistant dashboard
2.3.4.2. Choose a methodological assistant

Release 2007a+ 43/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.4.1. Assistant dashboard

The second line of buttons on the toolbar and the two views just below are the navigation centre based on the
methodological method used in the assistant mode:

YIS T T | f—— |ty ey amass m H L P > H
i i i
e N L LT Eosad 155, wwwegie sk [PROCEDLIS 2T6/ [ires 35 1 coluen 30
iy IO rarviereend] b JORY B revvieews (Bied) 0 it
s neveeaed § i 4 revere (B} =" 1] Frocedurs Btub (fleat [y}l £ Tloat (Mihy -- ¥ A% &Jual To Z4ED
Sodivenra rolnbily rdcalor] [5]] 7

Some other changes can be seen in the viewer:
1. Now, in the “Procedural Entities” view the list of files analyzed is sorted by the methodological assistant
used.
2. Inthe bottom right area is the source code view with coloured instructions. Each operation will be
checked and sorted by the methodological method using meaningful colour scheme and related diagnostic
and in the following order:

« Red: Assistant browses all errors which occur at every execution.

e Gray: Assistant browses each block of unreachable code depending if radio button “Ski p
gray checks” has been ticked or not.

e« Orange: Assistant chooses and reviews the “best” unproven operations —errors that may

occur sometimes.

“2 Click on .to navigate to next check.

The PolySpace Viewer has been refreshed with the first check selected by the Methodology of review:

Release 2007a+ 44/292
Revision 4.2 vA

B PolySpace Viewer - C:\PolySpace _Results\RTE_px_02_proj_LAST_RESULTS.rte
il Ecit Took Windows Help

S M o o o o 8 e & EF T e

Bl wfodelagy b bdy w ﬁ Clmsip pwyutnia 4 f @ ¥ W z0s

CoREng e [OEESE conrd . Pra,. | sl sl | FRCEEDURE, TR e 35 gn e 300

s T rarviireram 1 i ZE0W 00 dvetwy (ol _|:I.r| 1 |,'|_'.

D e | B Ve (el o | ol Procedurs_Stub(float (y) f Float (ki) == % im equal to Zare

e R T e Ward Bl |
OE
I Bl
Error | fleoat division by zere cocure

-
Fracena evoes O 2 M ES = ‘ECall Tree View
] E3 2 L —
E RUNTME_ERROR B9 2 o i * FUNTME _ERROR PROCEDURE 20
e £ T TEE 100
¥ BUNTIWE_ERFOR BETA 3 ey 4 * RUNTME_ERROR PROCEDURE |
W FEIONA 100
E RUNTIME_ERROR BIC (30 Culls L]
B ERETE o0
B PROCEDURE DY Uy 1
1] | . .
& SLARE ROOT o0 =
a ARE ROGT. COM 100 Eexample.adb
g A i i}
& 2 22 alsa
* L 23 EaTUEn (=10
MAINRTE o 24 &nd AT}
R BES] 25 end myaba)
et -]
i 0 27 == Loap leads te & zmars divimion
PROCEDLRE_ETLE o 28 prossdure Procedurs zdv is
RECURSION_CALLER] 29 H I oAntager = 0y
BECLEENE o o 30 & Antegar = 10}
= 31 bagin -
 AEA o 2 "‘I
¥ PHDWT &, 0
4 RARDOM i} "
< »

[T Tpmi Gowcetie emmphads FUNTME_ERRORPROCEDURE IDVIDNS Lk Colmn 3
The Methodological dashboard gives details and allows reviewing the check. On the selected check, it is possible to
mark the fact that it has been reviewed.

“2 Tick the radio button box and type an associated comment in the associated edit box on the right.
After, it looks like:

| {piacing, 1EPVRPYY BRSITRER Cowrd. Pra.. 1 Sobpis wl | SEOOERE T ies 5 Foples X

i II irveived ol 0V Mo Pl (Rt (1A | 9009

Pl et (i b e (R e [T Frocedurs _Stub{float{y] f float{x)]l; -- = iF squal Lo zero
S ity R EA | B

2 T haws ceviewed the check and tnaecz a comsamt]

'IE:'L-:-: 1 float divimion by zars bocurs

£

The left part of the dashboard has been updated, and displays some statistics in three lines:
. The first line gives the number and percentage of remaining checks to review of the current category. In the
previous example, it concerns red IDP checks.
. The second line gives values in the colour category (red, grey and unproven).
. Lastline gives in permanence the Sof tware reliability indicator.

Other buttons in the Methodological dash board allow navigating to previous check, coming back to current one

P 4

and going to next / previous category of reviewed checks selected by the Methodology.

Release 2007a+ 45/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

2.3.4.2. Choose a methodological assistant

Methodology for Ada
Methodalogy for Ada
Methodalogy for C

Methodalogy for C++

Methodaloagy for Model Based Dezigned

L
|
mymethodolagy and associated levels 1 2 3 have been pre-

selected by PolySpace.

The methodology allows selecting the categories of checks to review, the number for each category
and their order depending of a statistical algorithm.

The level (or criterion) defines the number of checks to review by category. Explicit name have been
associated to each criterion like “Fresh code”, “Unit test”and “Code revi ew’

It is possible to refine a self-created one or define its own Methodology. The “Pr ef er ences
Pol ySpace Vi ewer >Assi st ant met hodol ogy” Tab is accessible from the “Edi t ” menu.

E Preferences PolySpace Viewer

Tomin Meres | Tmbis opliong | Tookary opfions | Mnoelisrsoug: | Sressient cormigunsten
Thie o o, rvs sl B diraon Pl T ChisCh e
Vsl g dla e e by e bl Criponl Créwion? Cribwign]
rEvEs aneg S oann
L] fae
o T ol & rerey Do REOn e,
|
a Dbl o hr!r-.—l-:rl'rlhw = L
] et el iy, il
e ik, i
T bralcds ol Wil ol vBou s Ml D8 TRECRE 2 o
b rarviereeed frn each colegory Thim cenba My
8 DR M L L, FaonTL
- The weord ol {or A or SLL) i Sl il AERT
o Chaci,
- Thn weired e o skt i ALIT) P kol | = &G0 anfy
Orah e | il iy] e (T T)
B
P
P
% iy
L
CORTA S T oy
W
T -
(e,
FEy
[mor
Ferviorsy Fand tied] cofersn
B
S 1
i Gy
e
5 : Dk
| |
- T

You can create a new configuration set and define for each criterion what will be the categories of
check to review and how many in each one.

Note: This is not possible to change an existing configuration except by duplication and refinement.

Release 2007a+

46/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.3.5. Report Generation

When PolySpace performs an analysis, it generates textual files that can be used to generate Excel® reports.
These files are located in the results directory (See " C. \ Pol ySpace_Resul t s\ Pol ySpace- Doc" or

“<Pol ySpacel nst al | Di r >\ Exanpl es\ Deno_C\ Pol ySpace- Doc”).

All views (except source code) are printable and can be exported to textual or Excel® format (protected by
license).
The "C: \ Pol ySpace_Resul t s\ Pol ySpace- Doc* directory should contain the following files:

& C:\PolySpace_Results\PolySpace-Doc Ei@@

File Edit ‘iew Favorites Tools Help

@B'Hk v ? r_,.r-:SMT'I:I'n l Folders oy | P X w

Address ||) PolySpace-Doc | ' Go
Mame =~ Size Type Date Modified
=| News_Project_Call_Tree 3KB Text Document 5{9/2007 2:15FM

] Meve_Project_RTE_View 14KB Text Document 5192007 2:15 PM
j Mew Project Variable View 1EB Text Document Sf9/2007 2:15PM
= New_Project-NON-SCALAR-TABLE-APPENDIX 0KB PSFie 5/9/2007 2:13 PM
= PolySpace_Macros ¥LS File 5/9/2007 2:15 PM

2 Open the file called “Pol ySpace_Macr os. x| s”, enable macros when asked and then the following window
opens:

Release 2007a+ 47/292
Revision 4.2 vA

| A B C O E E (5 H

1

7 Copyright @ Polyspace Technologies, 1999-2006

3

4 apply Filkers? Generate checks by file?
5

5 “ Mo filters * yes

; ©" Beta filters ™ ho

5

10 Help \ llse this button to create the complete synthesis in one file. Help
=elect the RTE export view and afile in which to save results.

::; If the other views are in the same directory as the RTE view

e then they will automatically be incarporated into the same file.

14 Generate PolySpace Results Synthesis |

15

15

17 Reports can be generated from all PolyEpace ti file format results. These are generated
18 by the PolySpace Verifier during an analvsis, the export option in the PolvSpace Viewaer,
19 of frorm the command line using the "gen-excel-files” command.

20

21 Individual PolySpace text result files can be processed using the below macros:
22 |

23 The macros are:

24 BTE Apply ta RTE views exported from FolySpace Wiewer

a5 all Tree Apply to Call Tree views exported from FolySpace Yiewer
9 A e Apply ta Yariable views exparted from PaolySpace Viewer
2 S

20

e “ersion 3.4.10 RTE = Run Time Errar

30

_ Generate PolySpace Results Synthesis _ _
“2 Click on A file browser opens. Select the file called

“New_Proj ect RTE Vi ew. t xt ” as shown below:

Release 2007a+ 48/292
Revision 4.2 vA

Select a RTE View text file

Regarder dans : Ilifl PolySpace-Doc _:_] e e - Outils =
| - =] Mew_Project_Call_Tree.t:t

_. Qﬁ I ElMewe Project RTE_View bt

Histarique =] MNew_Project_Variable_‘iew. b

L -.'4.':}{“_

| Mes documents

Mom de Fichier : |

Cvrir

Favoris réseau Tvpe de Fichiers :]Te:-:l: Files [*,kxt)

annuler

After a few seconds, an Excel® file is generated. It contains several spreadsheets related to the application
analyzed.

I Application Call Tree | Shared Giobals /| Giohal Data Dtionary /. Checks by fle [Check Syrthess | Launching Options / RTE ~> Al checks icaton / Crange 01|

For example, in “Checks Synt hesi s” all statistics about checks and colors are reported in a summary table.

Release 2007a+ 49/292
Revision 4.2 vA

A B ICIBlE|F| &

1 RTE Statistics

2 Check category Check detail R O Gy % proved
_3 |0BAI Out of Bounds Array Index 0100 0.00%
4 MIVL Uninitialized Local Variable 001 100.00%
5 |IDP lllegal Dereference of Pointer |1 1 | 88.8%%
_ B |MIP Uninitialized Pointer 1010 |0 £ 100,00%
_F NIV Uninitialized Variable 0100 - 100.00%
8 IRV Initialized Value Returned 0 (0|0 100.00%
9 [COR Other Correctness Conditions |0 0 |0 100.00%
10 |ASRT User Assertion Failure 000 0.00%
11 |POW Fower Must Be Positive 0 0|0 0.00%
217DV Division by Zero 0|10 80.00%
13 |SHF Shift Amount Within Bounds ([0 [0 |0 0.00%
14 |OVFL Overflow 1013 |2 | 76,92%
15 |UNFL Underflow 011 |2 | N.67%
16 |UOVFL Underflow or Overflow 013 |0 67.14%
AT |[EXCP Arithmetic Exceptions 000 0.00%
18 |[NTC Mon Termination of Call 300 100,00%
19 [k-NTC Known Non Termination of Call ([0 0 |0 0.00%
20 |NTL Mon Termination of Loop 00 |0 0.00%
_21 |UNR Unreachable Code 010 |0 0.00%
22 [UNP Uncalled Procedure 1010 |0 0.00%
= IPT Inspection Point 1010 |0 0,00%
24 OTH other checks 0100 0.00%
25 [Total : 419 |5 32.17%

This ends ways of results review.

Release 2007a+
Revision 4.2 vA

50/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.4. Launch PolySpace Remotely

This paragraph describes the basic steps to launch an analysis in remote. To do so you need:
1. A Queue Manager server (QM) installed.
2. Your desktop PC configured with a PolySpace Client.
3. A networked machine configured with a PolySpace Server.
Please see the PolySpace Installation guide (available on the PolySpace CD-ROM in\ Docs\ | nst al |

or the Pol ySpace I nstall Guide Manual) to install and configure a Client and a Server.

Note: Launching an analysis remotely requires a PolySpace Server product and associated license.

Related subjects:
2.4.1. Steps of Launching

2.4.2. Management of PolySpace analysisin remote: the PolySpace Spooler
2.4.3. Batch commands
2.4.4. Shar e analyses between accounts

Release 2007a+ 51/292
Revision 4.2 vA

PonSpace

TECHHOLOGIES
Previous Back to table of contents Next

2.4.1. Steps of Launching

Only two simple steps:

2 Step 1: set up an analysis as described in section “Step 1: PolySpace Desktop - Setting up and launching an
analysis of a single Ada package" but do not launch it.
2 Step 2: tick the “Renot e anal ysi s” radio button (see next figure) and click on to launch the

analysis.
Femote s] | BEsoosn |]
| Compieion | cormiom | Lewn:ow | Levediow | evedion | Lown:ox | yom
OO0 Ok 000000 OO0 OO 00 0N DN DN O 0000 O D 00
Cipwpds e Cearch in the LE
Ef o5
st
[Full Loy

The analysis starts and the compilation phase is performed on the desktop PC. At the end of the “Compilation
phase” the analysis is sent to the Queue Manager server. By clicking on the “Full Log” tab, you will have a message

like this:

Femotn anatysis [¥] [B Exocute J 2
gl 100w, | LF A, Lavell ¢ I Lawnll] Lesnl 1 I Ll - [Tokal
D00 44 (. O [dn e dn] Ok o0 Ok o 00 (i O O Ol D53
ﬁ‘imw Semchinthelog: |44
hg"" CHEERFEATING EeNOCe CLL&
- Tasr vine for polyspace-ada®5: 5, Zpesal, 0,89 4 0.8=
o FullLog

TET
*r Fnd of PolySpace Verifier analyals

LR L

Adding the analysis o the Queus ...

Teansfeping the archive oo the S&rver ...

Teanafer compleced.

Analiysis I : 14
The anslysis has been queasd. You may £ollow 1T progress uaing che spooler.

The analysis has been gqueued with an ID number, and you can follow its progression using the PolySpace Spooler.
If you do not tick the “Remote analysis” radio button, the analysis continues locally.

Release 2007a+ 52/292

Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

2.4.2. Management of PolySpace analysis in remote: the PolySpace Spooler
You can check the analysis processes in the queue by clicking on the short cut on your desktop PC

PolySpace Spoaler
w Shortout
floke £y

Ao or on the icon

in the menu tab of the launcher.

- E)X]

%, PolySpace Spoaler

Languape;

h ¥ POMARD 2008, 135245 A
3 | Cynl Benkmoun | New Projsct e Eﬂduhﬂpﬂalhﬂal Handles Resudts FOMARD | completed | 02-Jub2006, 11:25:53 | ADASS
4 | Cynl Benkimoun | New Project | e\5-RafaehProject3\Femlts Holnheil Dema| POMSAD | completed | 03Jub3008, 133531 | ADASS
5 PolySpace Demo C e \Pobbpaceld 12 S\Examples\Demao POMARD | completed | 31-Jub 2006, 17:24:14 C
B Mare Lako ace EC-polvsp e \PolSpace endls FOMARD | completed | 02-Aug- 2006, 11:44:13 C
Fi Masc Lafo ace EC-polyzp c\PolySpesce ez POMARD | completed | D2-Aug-2006, 15044:25 C
B | Cynl Benkimoun | counters-polesp c:\PolySpacellemo CBe POMARD | complabed | DAug 2006, 16:22.53 C
E| Maic Lalo ace EC-polisp A Polvipace tendls localhast FOMARD | completed | 17-Aug-2006, 11,3353 C
10 PoluSpace Dema C e \PolSpacetd 3. 2.5\ExamplesDiemo C FOMARD | completed | 31 -Aug-2006, 07 2504 C
11| Cimil Benbimoun | New Propect | e\ BoulothSaleshdvant Wentes\CRLvesmdty | POMARD | complsted | 31-4ug-2006, 11:57.05 C
12 FolySpace Demo C |aceh3 32 5Enomples’\Demo C MISAS FULL| FOMARD | completed | 125ep- 2006, 11:5222 C
13 Foluspacs Dema C | acehd 32 SExamples\Demo C MISRA FULL) POMARD | completed | 12-5ep-2006. 1220818 C
14 | Cuwil Benkimoas | Mew Project c\PolySpace Resulz Verifies FOMARD rmirg | 235ep 2006, 135046 | ADASS

When you select an analysis (right hand click), you can manage it in the queue:

Release 2007a+ 53/292
Revision 4.2 vA

%, PolySpace Spooler

Oparsbions Help
1D | Anskho Application Resulls dwectony CPU Shahus D ate Language|
2 PolSpace Demo_sds |Polyipace'\&3 4BETAEwamples’\Demo Ads c| POMARD | completed | 30-Jun-2008, 135245 | ADASS
3 | Cyill Benkimoun | New Project | e\SRalashOperstonal Handler Resulls | POMARD | completed | (2Jub2006, 11.2553 | ADASS
4 | Conl Berkimoun | New Project | & \5Fafssl\Propeci S\Resuks Noinbert_Demo| POMARD | compsted | 03Jub2006, 13.36:91 | ADAS
] PolvSpace Dema C c:\PolSpace’ . 3.2 B wamples\Demo_C POMARD | completed | 31.Jul 2006, 17:24:14 E
& Masc Labs sce_EC-pobrp. e\PolSpace_resils POMARD | completed | 02Aug-20085, 11:44.13 C
f Maec Lalo ace EC-pobep. e \PolSpace resuliz POMARD | completed | 02-Aug-2006, 15044 25 C
8 | Cynl Benkimoan | counkens-polesp c\PokSpacellemo CBe POMARD | completed | 02:Aug-2006, 162253 C
- Mac Lalo ace EC-pobrip c\PokSpace resuls locathos! FOMARD | completed | 17-Aug-2006, 11.3853 L
110 PoluSpace Demo C t%ﬁmﬂ325‘£umﬁn‘ﬂm l: F‘DHﬁHD cernpleted | 31-hug- 2006, (728104 C
Cynl Berkinouwn | Mew Project | e\1-BoubothS alex'y) 'ﬁ.HD compisbed | 31 +hug-2006, 11.57.05 C
ace’ 3.3 2 BvE xamp Vieve hqﬁln compisted | 12-5ep-2005, 11:52 22 C
| . ace’d 3 2 SNExamp - prEE complsted | 12562006, 120818 C
Cyml Benkrnoun New_Projsct ea-Gep-2006, 135045
Mowe dosen inogueus
Fill aned dowendoad results ...
Kill sl resmowe Friom quews ...

Rarnove From queud ..

* Follow progress. This action lists the associated log file in a Launcher window. If the analysis is
running, you can follow the update of the log file and associated progress bar in real time on the Launcher
window.

* View log file. This action lists the associated log file in a “Command prompt” window, in which you can
the last 100 updated lines of the log file in real time. This option is only available when the analysis is
running.

* Download results. This action downloads the results of an analysis onto the client.. If the analysis is
still running, available results are downloaded on the client, without disturbing the analysis. The option is
not possible for a “queued” analysis

* Move down in queue. This action reduces the priority of a “queued” analysis.

* Kill and download results. This action stops the analysis definitively and the results are downloaded.
The status of the analysis changes from “r unni ng” to “abor t ed”. The analysis remains on the queue.

e Kill and remove from queue. This action stops the analysis definitively, and the analysis is removed
from the queue. Note: The results will be lost.

* Remove from queue. This action removes a “queued”, “abor t ed” or a “conpl et ed” analysis. Note:
The results will be lost.

The queue can be managed from an administrator point of view with the “Oper at i ons>" menu:

“Oper at i ons>Pur ge queue”. This action purges the entire queue or purges only completed and aborted
analysis (see next figure). The queue manager password is required.

Release 2007a+ 54/292
Revision 4.2 vA

| Purge queue g

Flease select the action you want to perdorm and type the administrator password

Action]F’urge completed and aborted analysis

Furge the entire gqueue
Fassword : el Rsel: and aborted analysis

OIE. Cancel

“Oper ati ons>Change r oot password”. This action changes administrator password of the queue manager
or the default one. Note: by default the password is “administrator”.

Release 2007a+ 55/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.4.3. Batch commands

* Launch analysis in batch:
A set of commands allow the launching of analysis in batch (under a cygwin shell On a Windows

machine). All theses commands begin with the prefix <Pol ySpacel nstal | Di r >/ bi n/

pol yspace-renot e-: pol yspace-renot e-ada95 and pol yspace-renot e- deskt op-
ada9s.

They are equivalent to respectively the commands with a prefix <Pol ySpacel nstal | Di r >/
bi n/ pol yspace- . For example, pol yspace-r enot e- deskt op- ada95 —server
[<host nane>: [<port>] | auto] allows the sending of a Ada desktop analysis remotely.

* Manage analysis in batch:
In batch and on a Unix platform, a set of commands allow the management of analysis in the
gueue. All theses command begin with the prefix <Pol ySpace Comon Di r >/

Renot eLauncher/ bi n/ psqueue- :

e psqueue-downl oad <id> <results dir>: download an identified analysis
into a results directory. [- f] force download (without interactivity) and —adm n —p
<passwor d> allows administrator to download results. [—ser ver <nane>[:port]]
selects a specific Queue Manager. [-Vv| version] gives release number.

e psqueue-kill <id>: kill an identified analysis.

* psqueue-purge all|ended: remove all or finished analyses in the queue.
* psqueue- dunp: gives the list of all analyses in the queue associated
to default Queue Manager.

e psqueue- nove- down <id>: move down an identified analysis in the
Queue.

* psqueue-renove <id>: remove an identified analysis in the queue.

* psqueue-get-gm server: give the name of the default Queue Manager.

e psqueue-progress <id>: give progression of the currently identified and
running analysis. [- open-| auncher] display the log in the graphical user interface of
launcher. [-ful I] give full log file.

* psqueue-set - password <passwor d> <new passwor d>: change
administrator password.

* psqueue-check-config: check the configuration of Queue Manager. [-
check-11i censes] check for licenses only.
* psqueue-upgrade: Allow to upgrade a client side (cf. PolySpace Install

Release 2007a+ 56/292
Revision 4.2 vA

guide in the <PolySpace Common Dir>/Docs directory). [- | i st -ver si ons] give the
list of available release to upgrade. [-i nstal | -versi on <versi on nunber> |-
install-dir <directory>]] [-silent] allow to install an upgrade in a given

directory and in silent.
Note: <Pol ySpace Comron Di r >/ bi n/ psqueue- <conmmand> - h gives information

about all available options for each command.

Release 2007a+ 57/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

2.4.4. Share analyses between accounts

Analysis-key.txt file

From a security point of view, all analysis spooled on a same Queue Manager are owned by the user
who sent the analysis from a specific account. Each analysis has a unique cryptic key.

The public part of the key is stored in a file anal ysi s- keys. t xt associated to a user account. On a

UNIX account, this file is located in:
* “/hone/ <user nane>/ . Pol ySpace”
On a Windows account, it is located in:
e “C \Docunents and Settings\<usernane>\ Application Data\ Pol ySpace”.

The format of the ASCII file is the following (spaces are tabulation):
<id of launching> <server nane of |IP address> <public key>

where <publ i ¢ key>is avalue inthe range [0. . F]

Example:

1 nl20 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 nl20 2860F820320CDD8317C51E4455E3D1A48DCES76F5C66BEEF391A9962
8 nml20 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6CL2FCA

When we make an attempt of management (download, kill and remove, etc.) on a particular analysis,
the Queue Manager will examine this file and find the associated public key to authenticate the analysis
on the server.

If the key does not exist, an error message appears: “key for analysis <I D> not found”. So sharing an
analysis with another user account necessitates the public key.

Sharing an analysis is quite simple, ask to the owner of the analysis the line in anal ysi s- key. t xt
which containing the associated <l D> and put it the line in your own file. After, it will be able to
download the analysis.

Magic key or share analysis between projects
A magic key allows sharing analyses without taking into account the <l D>. It allows same key for all
analysis launched by a user account. The format is the following:

0 <Server id> <your hexadeci mal val ue>
All analyses spooled will have this key instead of random one. In the same way, if this kind of key is
available in an anal ysi s- key. t xt file of another user, it allows to authorize any operation on any
analyses pushed with this key.
Note: It only works for all analysis launched after having put the magic key in the file. If the analysis
has been launched before, the allowed key associated to the ID will be used for the authentication.

Release 2007a+ 58/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

2.5. Summary

After having followed each steps of this tutorial, you are now able to launch an analysis using
PolySpace Client and explore some results with PolySpace Viewer. All theses commands can be
performed locally on your desktop PC or in a Client/Server architecture.

You will find more information on advanced options available with our tools in “Pol ySpace Ada

docunent at i on. pdf ” available on the CD-ROM (in \Docs\Manual\) or by clicking on b in
PolySpace tools.

Release 2007a+

59/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3. Working with analysis setup

PolySpace provides results at different stages of the analysis. They are the following:
. Compilation errors;

. Link errors;

Related subjects:
3.1. Compileerrors

3.2. Stubbing errors
3.3. Advanced setup

Release 2007a+ 60/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1. Compile errors

PolySpace may be used instead of your chosen compiler to make syntactical, semantic and other static checks.
These errors will be detected during the standard compliance checking stage, which takes about the same amount
of time to run as a compiler. The use of PolySpace this early in development yields a number of benefits:

* detection of link errors, plus errors which are only apparent with reference to two or more files;
* objective, automatic and early control of development work (perhaps to avoid errors prior to
checking code into a configuration management system).

Related subjects:
3.1.1. OS and target issues

3.1.2. Unit analysis

Release 2007a+ 61/292
Revision 4.2 vA

Previous

PonSp

ace

TECHNOLOGIES

Back to table of contents

3.1.1. OS and target issues

PolySpace takes the type of processor used in the target environment into account during verification. It determines various
characteristics of data representation such as data sizes, addressing, and so on. They are essential to correctly determine some

types of errors, such as overflows.

PolySpace supports some of the most commonly used processors as listed in the table below. Even if the processor used in a
target environment is not explicitly mentioned, it is safe to specify one from the table which shares the same listed characteristics.

Target sparc m68k/coldFire 1750a |powerpc32bits| powerpc64bits 1386
Character 8 8 16 8 8 8
short_integer 16 16 16 16 16 16
Integer 32 32 16 32 32 32
long_integer 32 32 32 32 64 32
long_long_integer 64 64 64 64 64 64
short_float 32 32 32 32 32 32
Float 32 32 32 32 32 32
long_float 64 64 48 64 64 64
long_long_float 64 64 48 64 64 64

. Target powerpc32hits: The largest default alignment of basic types within record/array is 64.
. Target powerpce4bits: The largest default alignment of basic types within record/array is 64.
. Target i386: The largest default alignment of basic types within record/array is 32.

To identify a target processor's characteristics, compile and run the program below. If none of the characteristics described above

match, please contact PolySpace Technical Support (http://www.polyspace-customer-center.com/).

with TEXT I G
procedure TEMP is

type T_Ptr is access integer;

Ptr T Ptr;

begi n

TEXT | O PUT_LI NE (
TEXT_1 O PUT_LI NE (
TEXT_1 O PUT_LI NE (
TEXT_| O PUT_LI NE (

- TEXT _1 O PUT_LINE (

TEXT_| O. PUT_LI NE (

-- TEXT _1 O PUT_LINE (

TEXT_| O. PUT_LI NE (
TEXT_1 O PUT_LI NE (
TEXT_1 O PUT_LI NE (
end TEMP;

Release 2007a+
Revision 4.2 vA

I nteger' | rage
I nteger' | mage
I nt eger' | mage
I nteger' | mage
I nteger' I mage(Long_Long_I nteger'Size));
I nteger' I mage (Float'Size));
Integer' lmge(D Float'Size));
I nteger' Il mge (Long_Fl oat' Size));

I nteger' I mage (Long_Long_Fl oat' Size));
Integer' lmage (T_Ptr' Size));

(Character' Size));

(Short _Integer'Size));

(I nteger'Size));

(Long_I nteger' Size));

62/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.1.2. Unit analysis

PolySpace needs the complete specifications associated to a package body analysis. Some times we
could face this kind of obvious error message:

Verifying _pst_main
Verifying ny_package

-> Verifier found an error in ./M_Package. adb: 2: 14: M ssi ng specification
for unit "My _Package"

PolySpace reports this kind of error when a package body is supplied as the source and the
specification is supplied as one of the specifications in one of the -ada-include-dir directories.

Specifications of the package body needs to be included in the list of supplied sources.

Release 2007a+ 63/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.2. Stubbing errors

Related subjects:
3.2.1. Manual vs. Automatic Stubbing

3.2.2. Automatic stubbing
3.2.3. Pragma assert
3.2.4. Volatile

Release 2007a+ 64/292
Revision 4.2 vA

Previous

PonSpace

TECHNOLOGIES
Back to table of contents Next

3.2.1. Manual vs. Automatic Stubbing

Only advanced users should consider manual stubbing. PolySpace can automatically stub every
missing function or procedure, leading to an efficient analysis with a low loss in precision. The purpose
of this chapter is to help you understand how to make analysis even faster and more precise.

What stub functions should I provide?

Stubs do not need to model the details of the functions or procedures involved. They only need to represent the
effect that the code might have on the remainder of the system.

Let's consider aprocedure to_stub.

If procedure_to_stub represents:

e atiming constraint, such as a timer set/reset, a task activation, a delay or a counter
of ticks between two precise locations in the code, then you can stub it to an empty
action (begin null; end;). PolySpace has no timing constraints and already takes into
account all possible scheduling and interleaving and enhances all timing constraints:
there is no need to stub functions that set or reset a timer.Simply declare the variable
representing time as volatile.

 an /O access: to a hardware port, a sensor, read/write of a file, read of an eeprom,
write to a volatile variable, then: there is no need to stub a write access or simply stub a
write access to an empty action (see above), stub read accesses as "l read all possible
values (volatile)".

* awrite to a global variable, you may need to consider which procedures or function
write to it and why: do not stub the concerned pr ocedur e_t o_st ub if:

o this variable is volatile;

o this variable is a task list. Such lists are accounted for by default because all

tasks declared with the -task option are automatically started.

write a procedure_to_stub by hand
if this variable is a regular variable read by other procedures or functions.

 aread from a global variable: if you want PolySpace to detect that it is a shared
variable, you need to stub a read access as well. This is easy to achieve by copying the
value into a local variable.

Generally speaking, follow the Data Flow and remember that:

* PolySpace only cares about the Ada code which is provided,
 PolySpace does not need to be informed of timing constraints because all possible
seqguencing is taken into account,

Why should | provide stub functions?

Example

Release 2007a+
Revision 4.2 vA

To avoid partial, imprecise or even wrong results;
To replace missing code inside functions which PolySpace will ignore.

65/292

This example shows a header for a missing function (which might occur, for example, if the code is an
incomplete subset or a project.). The missing function copies the value of the ‘src’ parameter to ‘dest’,
so there would be a division by zero — RTE - at run time.
function a_m ssing_function
(dest: in out integer,
src : in integer);
procedure test is
a: integer;

b: integer;
begi
a. = 1;
b: = 0;
a_mssing function(a, b);
b:=1/ a;

-- "/" wth the default stubbing
end;
8§ By relying on PolySpace default stub, the division is shown with an
warning because ‘a’ is assumed to be anywhere in the full permissible integer range
(including 0)
8 If the function was commented out, then the division would be green.
8§ Ared division could only be achieved with a manual stub.

This example shows what might happen if the affects of assembly code are ignored.
procedure test is

begi n
a. = 1;
b: = 0;
-- copy "b" to "a":
-- b:=a
pragma asm (" nove: a,b")
b:= 1 /a;
end;

By relying on Verifier's default stub, the assembly code isignored and the division " /" isgreen. The red division
"" could only be achieved with a manual stub.

When and why should | stub
* manually?
0 to gain precision by restricting cases covered by automatic stubs;
o because my function writes to global variables.
e automatically?
0 Because no run time error will ever be introduced by automatic stubbing, as the worst

case is always assumed;
o Itis very quick to do.

Release 2007a+ 66/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.2.2. Automatic stubbing

Problem

What is the default behaviour for missing functions?

Explanation

Some functions may not be included in the set of Ada source files because:

* they are external,
* they arewrittenin C, or any other language than Ada,
» they are part of the system libraries.

PolySpace relies on and trusts their specifications when stubbing them.

Solution

Addthe- aut omat i c- st ubbi ng option to your launching script and PolySpace will stub missing code as
follows:

» for anin parameter, nothing happens;
» foranout (or in out) parameter, the variable will be given the full range of itstype;
o for areturn parameter, it will be the full range of itstype.

A procedure with this specification:
procedure a_mssing function (a: in out type 1, b: in integer);

will be stubbed like so:
a_m ssing_function (var_1, var_2)

That is - the"var_1" variable will be overwritten with the full range of type 1.

Release 2007a+
Revision 4.2 vA

67/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.2.3. Pragma assert

You can use the construct 'pr agma assert ' within your code to inform PolySpace of constraints

imposed by the environment in which the software will run. A “pr agma assert ” function is:
pragnma assert (<i nteger expression>);
If <i nt eger expressi on> evaluates to zero, then the program is assumed to be terminated,
therefore there is a “real” run time error. This is why PolySpace will produce checks for them. The
behaviour matches the one exhibited during execution, because all execution paths for unsatisfied
conditions are truncated (red and then grey). Thus it can be assumed that any analysis performed
downstream of the assert uses value ranges which satisfy the assert conditions.
It is therefore possible to use the construct 'pr agma assert 'in a procedure to inform PolySpace of
constraints of the environment in which the software will be embedded. User assertions can be used to
describe the physical properties of the environment such as:
. the maximum and minimum speed limit (a car never goes faster than 200 miles per hour or
slower than 0),
. the maximum duration of software exploitation (five years for a satellite and one hour for its
launcher),
. andsoon ...

Example

procedure nain is
counter: integer;
-- counter is not initialized
random i nt eger;
pragma vol atile (random;
begi n
counter: = random
-- counter~ [-2731, 2731-1]
pragma assert (counter < 1000);
pragma assert (counter > 100);
end;

end mai n;

because the conditions may or may not be fulfilled. But, from then on,
counter ~ [101, 999] because any execution paths that does not meet the conditions are halted.

Release 2007a+ 68/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.2.4. Volatile

Problem

A volatile variable can be defined as a variable which does not respect the "RAM axiom".

Thisaxiomis:

"if | writea value V in the variable X and if | read X's value before any other writing to X occurs, | will get V."

Explanation

Asthevaue of avolatile variable is "unknown", it can take any value (that can be) represented by the type of the
variable and can change even between 2 successive memory accesses.

A volatile variableis viewed as a " permanent random" by PolySpace because the value can change within its
whole range between one read access and the next.

Note that even if the volatile characteristic of avariable is also commonly used by programmers to avoid
compiler optimization, it has no consequence for PolySpace.

function test return integer is
random | nt eger;
pragma vol atile (randon;
y: I nteger; -- random ~ [-2731, 2731-1] ,
-- although randomis not initialized
begi n
y:= 1 /random -- division and init orange
-- because random
~ [-2731, 2731-1]
random = 100;

y:= 1 /random -- division and init orange
-- because random- [-2731, 2731-1]
return random -- random ~ [-2731, 2731-1]
end;

Release 2007a+ 69/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3. Advanced setup

Related subjects:
3.3.1. Reduce oranges step by step

3.3.2. Variables

Release 2007a+ 70/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.3.1. Reduce oranges step by step

Although PolySpace is effective and straightforward to launch with the minimum of effort, you may find
that some applications would benefit from some code preparation in order to streamline the job of
working through the resulting orange checks. There are four primary approaches which may be
adopted in isolation or in combination:

. Apply some recommended coding rules. This is the most efficient means to reduce oranges.

. Implement manual stubbing of previously missing (and therefore automatically stubbed)
functions.

. Specify call sequences with care.

. Constrain some data assignments. Conventional testing analyses a single set of data, whereas
PolySpace can analyse your module for problems by taking into account all possible data
values. If the range of possible values is specified more precisely than the default “full range”
approach (for instance using constrained type or sub types), then there will be less “noise” in the
form of orange checks resulting from “impossible” values.

Related subjects:
3.3.1.1. Vary the precision level

3.3.1.2. Apply chosen coding rules

3.3.1.3. Increase the number of red and green checks
3.3.1.4. Apply some functional constraintsto variables
3.3.1.5. Tuning PolySpace par ameters

Release 2007a+ 71/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.1.1. Vary the precision level

One way to affect precision isto select the algorithm that will be used to model the cloud of points. The exact
method of modelling is managed internally, but you can influence it by selecting the —quick (only in C or C++
language), —00, —01, -0O2 or —O3 precision level. Y ou can also select a particular precision for a specific body (in

Ada) or aCfile(in C).

The methods used by Verifier to represent the datainternally are reflected in the level of precision to be seenin
the results. Asillustrated below, the same orange check which results from alow precision analysis will become
green when analysed at a higher precision.

Operation: 1 / (x-v)

':rr

Vary the precision rate

Release 2007a+ 72/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.3.1.2. Apply chosen coding rules

Hereunder is a list of simple rules that allow PolySpace to be more precise and will higher the
selectivity of any Ada analysis:

. Use constrained types. Use subtype and not standard type

. Do not use "use at" clause

. Do notuse unchecked_conversi on

. Minimize the use of big and complex types (record of record, array of record, etc.)

. Minimize the use of volatile variables,

. Minimize the use of assembler code.

. Do not mix assembly code and Ada. Gather all assembly code in a procedure/function which

can be automatically stubbed.

Release 2007a+ 73/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

3.3.1.3. Increase the number of red and green checks

This example shows a header for a missing function (which might occur, for example, if the code is an incomplete
subset of a project). The missing function copies the value of the ‘src’ parameter to ‘dest’:

function a_m ssing_function

(dest: in out integer,
src : in integer);

Applying fine-level modeling of constraints in primitives and outside functions at the application periphery will
propagate more precision throughout the application, which will result in a higher selectivity rate (more proven
colours, i.e. morered + green +). For this function it could be only adding a simple body:

function a_m ssing_function

(dest: in out integer,
src : in integer)
begi n
dest := src;
end;

Inthiscase, it is obvious that instead of considering full range for dest parameter, PolySpace will consider the

relation between input parameter src and output parameter, propagating more precision throughout the
application. See same examplein “Manual vs. Automatic Stubbing” paragraph.

Release 2007a+ 74/292
Revision 4.2 vA

Previous

PonSpace
TECHNOLOGIES
Back to table of contents

3.3.1.4. Apply some functional constraints to variables

Stubs do not need to model the details of the functions or procedures involved. They only need to represent the effect that the code might have on the
remainder of the system. If a function is supposed to return an integer, the default automatic stubbing will stub it as returning all values in the full type of an

integer.

It will reduce the cloud of points and therefore increase the precision if a restricted range is specified instead of the full range. Nevertheless, it is not
necessary to write the exact code depending on complicated algorithm, and an interpolation between 4 parameters; only a quick stub is required, as

shown in the following examples.

with volatile and assert

with assert, and without volatile

\without assert, without volatile, without " if"

functi on stub return I NTEGER i s
tmp: | NTEGER,

random | NTEGER;
pragma vol atile (random;
begi n

t np: = random
pragma assert (tnp>=1);
pragma assert (tnp<=10);
return tnp;

end;

f uncti on randomreturn | NTEGER;
pragma Interface (C, randomn;
function stub return INTEGER i s
tmp: | NTEGER;
begi n
t mp: = random
pragma assert
pragnma assert
return tnp;
end;

(tmp>=1);
(t np<=10);

function randomreturn | NTEGER;
pragnma Interface (C, random;
function stub return INTEGER is

tmp: | NTEGER;
begi n

tmp: = random

while (tnp<l or tnp>10)

| oop

t np: =r andom
end | oop;
return tnp;

end;

Given that PolySpace models data ranges throughout the code it analyses, it will obviously produce more precise, informative results, - provided that the
data it considers from the “outside world” is representative of the data that can be expected when the code is implemented. There is a certain number of
mechanisms available to model such a data range within the code itself, and three possible approaches are presented here.

There is no particular advantage in using one approach or another (except, perhaps, that the assertions in the first two will usually generate orange
checks) — it is largely down to personal preference.

Release 2007a+
Revision 4.2 vA

751292

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

3.3.1.5. Tuning PolySpace parameters

There is a compromise to be made to balance the time required to obtain results, and the precision of
those results. Consequently, launching PolySpace with the following options will allow the time taken
for analysis to be reduced but will compromise the precision of the results. It is suggested that the
parameters should be used in the sequence shown — that is, if the first suggestion does not increase
the speed of analysis sufficiently then introduce the second, and so on.

. switch from —O3 to a lower precision, - @2, -0l or -0

Release 2007a+ 76/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.2. Variables

Related subjects:
3.3.2.1. Float rounding

3.3.2.2. Expansion of sizes

Release 2007a+ 771292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

3.3.2.1. Float rounding

PolySpace handles float rounding by following the the ANSI/IEEE 754-1985 standard. Using the -

i gnor e-fl oat - roundi ng option, PolySpace computes exact values of floats. Some paths will be
reachable or not for PolySpace while they are not (or are) depending of the compiler and target. So it
can potentially give approximate results: should be . Using the option allows to first
have a look on remaining check OVFL.

The Following example shows the board effect of such option:
package float _rounding is

procedure nain;
end fl oat roundi ng;

package body float rounding is
procedure nmain is
x : float := float'l ast;
random : bool ean;
pragma i nport (C, random ;

begi n
i f random t hen
X :=x +5.0- float'last;
-- with -ignore-float-rounding : overflowred on + 5.0
-- wWithout -ignore-float-rounding :
el se
X =X - 50- float'last;
-- with -ignore-float-rounding : x is now equal to 5.0
-- without -ignore-float-rounding : x is very close to zero
end if;
end;

end fl oat _roundi ng;

Release 2007a+ 78/292
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

3.3.2.2. Expansion of sizes

The —array-expansion-size option forces PolySpace to analyze each cell of global variable arrays
having length less or equal to number as a separate variable.

Example:
Package body Test is
G ob _Array 3 : array(l..3) of Integer
A ob_Array_8 : array(1l..8) of Integer
procedure Main is
begi n

pragma Assert (A ob_Array_3(3) = 3);
pragma Assert (G ob_Array 8(3) = 3);
end Main;
end Test;

In the example above, we will have different colours on the assert, depending whether this option has
been set or not:
. With -array-expansion-size 3:
G ob _Array_3is analysed as separate variables. Therefore, PolySpace is able to say that
the assert is true, i.e.
Assert (d ob Array 3(3) = 3)
A ob_Array_8is analysed as a single variable, and the assert is orange;
Assert (@ ob _Array 8(3) = 3);
. With -array-expansion-size 8, both variables are analysed cell by cell, and both assert are

The -variable-to-expand option is used to specify aggregate variables (record, etc.) that will be split into
independent variables for the purpose of an analysis. This option has an impact on the Global Data
Dictionary results:

. Each variable specified in this option will see its fields analysed separately;

. The data dictionary will distinguish fields accessed by different tasks.
The depth of the variable to expand is controlled by the —variable-expansion-depth.

Note: Expansion options have an impact on the duration of an analysis.

Release 2007a+ 79/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4. Working with results review

Related subjects:
4.1. Basics. prerequisite being able to review PolySpace results

4.2. Automatic M ethodology

4.3. How to find a maximum number of bugswithin an hour reviewing oranges: selective
orange review

4.4. Coloured source code for Ada

4.5. Advanced resultsreview

Release 2007a+ 80/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.1. Basics: prerequisite being able to review PolySpace
results

Once PolySpace has completed an analysis and there are graphical results available, there will be coloured entries
shown in the source code. This section explains how to understand the implications of the four colours:

* Red shows run-time errors which will occur every time that piece of code is executed;

. shows code which is unreachable (dead code);

. is a warning;

. Green shows safe instructions: these are code sections which can never lead to a run time
error.

This section explains the steps necessary to analyze a result of any colour. There are four core rules to bear in
mind throughout this section, viz.

. The next instruction is reached providing no Run Time Error was met at the previous one.

. Each Run Time Error implies a “core dump” for PolySpace. The corresponding execution is considered to
have stopped, even if the run time execution of the code might not. SO — red checks will be followed by
grey checks, and orange checks only propagate the green parts through to subsequent checks.

. You should focus on the message given by PolySpace, and try not to jump to false conclusions. You must
explain the colour of a check step by step, until you find the root cause.

« You should focus on an explanation by examining the code, and try not to be influenced by knowledge of
what the code actually does.

Related subjects:
4.1.1. Propagation of colors

4.1.2. What isthe message and what does it mean?

4.1.3. What isthe Ada explanation?

4.1.4. Review run timeerrors. Fix red errors

4.1.5. Review dead code checks. why isgrey code inter esting?
4.1.6. How to conclude an orange review

Release 2007a+ 81/292
Revision 4.2 vA

TECHNOLOGIES

PonSpace

Previous Back to table of contents Next

4.1.1. Propagation of colors
For this step, you will find why green is propagated out of . In the example below, consider the explanation of :
. the grey after the red in the red function;

. and the green colour of the array.

Explanation
procedure red I s f unction read_an_I nput return I nteger;
X: integer; procedure propagate is
begi n X: Integer;
X=1/ X Y: array (0..99) of Integer;;
X=X + 1; begi n
end; X: = Read_An_i nput;
Y(X):=0; -- [array index w thin bounds]
Y(X): =
end mai n;

Let’s detail each line of code for:
. The red function:
When PolySpace divides by X, X has not been initialized. Therefore the corresponding check (Non Initialized Variable) on X is red;
As a result all possible execution paths are stopped, because they all produce an RTE.
. The propagate function:
X'is assigned the value of Read_An_Input. After this assignment, X ~ [-2731, 2"31-1];
At the first array access, an “out of bounds” error is possible since X can be equal to (say) -3 as well as 3;

All conditions leading to an RTE are assumed to have been truncated — they are no longer considered in the analysis. So on the
following line, the executions for which X ~ [-2731, -1] and [100, 2"31-1] are stopped;

Consequently at the next instructions X ~ [0, 99];
Hence at the second array access, the check is green because X ~ [0, 99].
Summary

Green is propagated out of

When doing manual stubbing and by using assert, you can use value propagation to restrict input values for data. See Ada: pragma assert.

Release 2007a+ 82/292

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.1.2. What is the message and what does it mean?

PolySpace numbers the results in the same order than an execution would have performed the
associated operations.
Consider the instruction: x := x + 1;

In each case, PolySpace first checks for a potential NIV (Non Initialized Variable) for x, then checks the
potential OVFL (overflow). An awareness of such sequences will help to understand the message
which PolySpace is presenting before going on to assess what that means for the code.

In the example below, the orange NIV on X in the test:

if (x > 101)

does not mean PolySpace does not know the value of X, which might be the conclusion of a hasty
analysis.

So - what does it mean?
function Read_An_l nput return integer;

procedure Main is

X I nteger;
begi n
ifo() then
X = 100;
end if;
If (X >101) then -- [orange on the NIV : non initialised variable]
X = + 1, -- grey code
end if;
end Mai n;
Explanation

When you click on the check under the Viewer, you see the category of the check. Here, the category
is NIV (Non Initialized Variable). However, PolySpace may well analyze subsequent lines of code, and
continue with an understanding of the possible values as if initialization has taken place.

The correct analysis of this result might be that if X has been initialized, the only possible value for X is
{100 }, which is not greater than 101, so the rest of the code is grey. Hence we can conclude that
PolySpace did know the values - which is different from our first, hasty analysis.

Summary
. FALSE:if "(> 101) " means: PolySpace does not know anything.
. TRUE: if "(> 101) " means: PolySpace does not know if X has been initialized.

The first rules of reviewing results are: focus on the message given by PolySpace and do not focus on
a quick interpretation.

Release 2007a+ 83/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents

4.1.3. What is the Ada explanation?

Try to explain results based on the code and not on:

e A physica action,
e A particular configuration, data calibration,
* Or any other reason than the code itself.

Concentrate on the source code only — remember, Verifier knows nothing of the environment in which the code

will be executing.

In the example below what is the explanation of the dead code () following the "if" statement?

function Read_An_I| nput return integer;
procedure Main is

X I nteger;

Y: array (0..99) of Integer;
begi n

X := Read_An_i nput;

Y(X) :=0; --

Initialized]

Y(X-1):= (1 X) + X; [array index is within its bounds]

if (X =0) then
Y(X) =1, --
end if;

end Mi n;

Thisis amethod you can use to understand any colour

» First step: the line containing the accessto the Y array is unreachable (

S0-thetest to assess whether x isequal to O is always false

* Now, it would be easy to jump to the conclusion that this results from input data which is

aways different from 0. However, Read_An_| nput can be any value in the full integer

range, so thisis not the right explanation.

X hasbeen assigned to its full range, but the test assumesthat X is never equal to O at this

line. Why?
» Second step: "Why isthe test dways false?"

» After thevariable definitions, it can be seen that the first array accessis orange: before this
lineX] [-231, 2731-1] because of the Read An_Input function, and afterwards, X [] [0, 99]

(see Examples “*Example D” and “<Example E”)
« SoX][0, 99 just after thefirst array access.

Release 2007a+
Revision 4.2 vA

84/292

» Thenext operation to be checked by PolySpace Verifier isthe addition “... + X” whichis
green
* The next operation checked after that will be the division by X whichis because

X [J [0, 99]. So after the division, X L] [1, 99]. The orange will truncate all execution paths
that lead to arun time error, so that in our example, all instances where X isequal to O are
stopped.

» Third step: the second array index is green and therefore explains why the test is always fal se.

When the assignment sign is reached, X [[1, 99] and hence the array accessis green.

e Conclusion: The user hasfound abug! The has shown that the test should be
performed before the division

Note Y ou must explain a colour step by step, until you find the root cause, and focus
on explanation within the code only. Try to exclude the knowledge about what the code
actually does in its execution environment.

Note: In this example, al results are located in the same procedure. The same approach isvalid if acheck isto be
analysed involving a procedure called by others. Use the "called by" call tree to help in the analysis of the results.

Release 2007a+ 85/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.1.4. Review run time errors: Fix red errors

All Run Time Errors highlighted by PolySpace are determined by reference to the language standard, and are
sometimes implementation dependant — that is, they may be acceptable for a particular compiler but unacceptable
according to the language standard.

Consider an overflow on atype restricted from -128 to 127. The computation of 127+1 cannot be 128, but
depending on the environment a “wrap around” might be performed with a resulting value of -128.

Thisresult is of course mathematically incorrect. If the value represents the atitude of a plane, this could result in
adisaster.

By default, PolySpace doesn’t make assumptions about the way a variable is used. Any deviation from the
recommendations of the language standard istreated asared error, and must therefore be corrected.

PolySpace identifies two kinds of red checks

* Red errorswhich are compiler-dependant in a specific way. On some occasions a PolySpace
option may be used to allow particular compiler specific behaviour, and on others the code must be
corrected in order to comply. An example of a PolySpace option to permit compiler specific
behaviour would be the option to force “IN/OUT” ADA function parameters to be initialised.
Examplesin C include options to deal with constant overflows, shift operation on negative values,
etc.

e Allother red errors must be fixed. They are bugs.

Most of the bugs you'll find are easy to correct once they are identified. PolySpace identifies bugs
irrespective of their consegquence, or of the ease with which they can be corrected.

Release 2007a+ 86/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.1.5. Review dead code checks: why is grey code interesting?

Related subjects:
4.1.5.1. Functional bugs can befound in grey code

4.1.5.2. Note on structural coverage

Release 2007a+ 87/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.1.5.1. Functional bugs can be found in grey code

PolySpace finds different types of dead code. Common examples include:

» Defensive code which is never reached

» Dead code dueto a particular configuration

* Librarieswhich are not used to their full extent in a particular context
* Dead code resulting from bugs in the source code.

The causes of dead code listed in the examples below are taken from critical applications of embedded software,
analysed by PolySpace.
. A lack of parenthesis and operand priorities in the testing clause can change the meaning
significantly.
Consider aline of code such as
IFNOT aAND bORcAND d
* Now consider how misplaced parentheses might influence how that line behaves ...
IFNOT (aAND b OR c AND d)
IF (NOT (a) AND b) OR (c AND d))
IF NOT (aAND (b OR c) AND d)

* Thetest of variable inside a branch where the conditions are never met;
Anunreachable“else” clause where the wrong variable is tested in the “if” statement
A variablethat is supposed to be local to the file but instead islocal to the function

* Wrong variable prototyping leading to a comparison which is aways false (say)

Asisthe casefor red errors, the consequence of dead code and the effort needed to deal with it is unpredictable. It
can vary
* From one week effort of functional testing on target, trying to build a scenario going into that
branch, and wondering why the functiona behaviour is altered, to
* A 3 minutes code review discovering the bug.

Again, asfor red errors, PolySpace Verifier doesn’t measure the impact of

Thetool provides alist of dead code. A short code review will enable you to place each entry from that list into
one of the five categories from the beginning of this chapter. Doing will identify known dead code and uncover
real bugs.

PolySpace experienceisthat at least 30% of revealsreal bugs.

Release 2007a+ 88/292

Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4.1.5.2. Note on structural coverage

PolySpace aways performs upper approximations of all possible executions. Therefore even if aline of codeis
shown in green, there remains a possibility that it is a dead portion of code. Because PolySpace made an upper
approximation, it could not conclude that the code was dead, but it could conclude that no run time error could be

found.
PolySpace will find around 80% of dead code that the devel oper would find by doing structural coverage.

PolySpace is intended to be used as a productivity aid in dead code detection. It detects dead code which might
take days of effort to find by any other means.

Release 2007a+ 89/292

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.1.6. How to conclude an orange review

Related subjects:
4.1.6.1. What isan orange?

4.1.6.2. What arethe different sour ces of oranges?
4.1.6.3. How to deter mine the cause of one orange?

Release 2007a+ 90/292
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

4.1.6.1. What is an orange?

If acheck isorange, it means that the approximate data set assumed by the analysis to represent a variable intersects with the error zone.

Hon empty intersection means Operation: 1 {x-7)

kg

Graphical representation of an check

Behind this picture, the orange colour can reveal any of the situations below.

Note that any an orange check can approximate a check of any other colour.

approximated by

Red approximated

by
ey
e
" Any other situation: Green approximated by
X real orange

If PolySpace attempted to manipulate every possible discrete value for al variables, the overheads for the analysis would be so large that
the problem would become incomputable. PolySpace manipulates polyhedrons representing data sets, and therefore cannot distinguish the
category of an orange. That task is left to you, and is detailed in the following chapters.

(As a conseguence, sometimes you may find an which represents something which seems an obvious bug, and at other
times you may find such a which is obviously safe. Asfar as the mechanism within PolySpace is concerned, it simply represents the
intersection of two data sets— which iswhy you are left to perform the results review to draw these distinctions.)

Release 2007a+ 91/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.1.6.2. What are the different sources of oranges?

There are anumber of possible causes of to be considered.
1. Potential bug: an can represent areal bug.

Example—Iloop with division by zero

2. Inconclusive check: an can represent a situation where PolySpace is unable to
conclude whether a problem exists. It is sometimes in the nature of software code that it cannot be
concluded whether there is a potential error. In the example below, the task T1 can be started before or
after T2, so PolySpace can’'t conclude without the calling sequence being defined.

 Consider avariable X initialised to 0, and two concurrent tasks T1 and T2.

e Supposethat T1 assignsavalue of 12 to variable X

* Now supposethat T2 divides alocal variable by X. The division is shown as an
because T1 can be started before or after T2 (so adivision by zero is possible).

3. Dataset issue: an resulting from atheoretical set of data. PolySpace considers all
combinations of input data rather than one particular combination (that is, it uses an upper approximation
of the data set). Therefore a check may be coloured asthe result of a combination of input values
which is analysed by PolySpace, but which will not be possible at execution time.

e Consider three variables X, Y and Z which can vary between 1 and 1000

* Now suppose that the code computes avalue of X*Y*Z on atype 16 bits. The result can
potentially overflow. It may be known when the code is devel oped that the variables can't all
take the value 1000 at the same time, but this information is not available to PolySpace. The
code will be coloured , accordingly.

4. Basic imprecision: an can be due to an imprecise approximation.

 Consider X, asigned integer between -2"31 and 2/31-1.

e Suppose afunction is called which performs the assignment x=1/x

* The parameters passed to the function imply that x must be equal to -5, -3, 8 or [10..20]. It
is clear from inspection that there is no problem here, but in this case PolySpace has made an
Imprecise approximation.

Release 2007a+ 92/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.1.6.3. How to determine the cause of one orange?

Consider each of the four categoriesin turn. Bugs may be revealed by any category of

other than the “Basic imprecision” category.
1. Potential bug: An can reveal code which will fail under some circumstances. The
following section describes how to find them.

2. Inconclusive analysis: Most inconclusive will take some time to investigate. An
inconclusive may well result from a very complex situation such that it may take an hour
or more to understand the cause. Y ou may decide to recode in order to be certain that there is no risk,
bearing in mind the criticality of the function and the required speed of execution.

3. Datasetissue. It isnormally possible to conclude that an isthe result of data set
problem in a couple of minutes. Y ou may wish to comment the code to flag this warning, or alternatively
modify the code in order to take constraints into account.

4. Basicimprecision: PolySpace cannot help to debug this code. Y ou may or may not have a problem
here, but you will need a supplementary activity to be sure. Most of the time, aquick code review isa
suitable path to take, perhaps using the Viewer’ s navigation facilities.

Release 2007a+ 93/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.2. Automatic Methodology

During an analysis, PolySpace is able to automatically highlight some orange checks considered as
potential robustness issues in the code.

The automatic methodology separates a sub part of orange NIVL and orange OVFL from all oranges
checks:

e all NIVL scalar local . Theses NIV do not concern float, record (and component) and
arrays.

 All OVFL/UNFL scalar between subtypes: conversion of a subtype in a smaller
subtype.

From a Methodology point of view, theses checks need to be addressed first. As PolySpace is very
precise on them, we can always deduce that an orange of this kind is most of the time synonymous of
a robustness issue.

Example:

1 Package body Test is

2 ATab : array(0..9) of Integer := (Qhers => 0);

3 function Assign _array(X : integer) return Integer is

4 Y . Integer;

5 begi n

6 y := ATab(X - 12); -- Warning UOVFL on operator “-“ given by
7 -- the Autonmtic nethodol ogy

8 return vy,

9 end Assign_Array;

10

11 function read bus status return boolean; -- function stubbed
12 procedure partial _init(New Alt : in out Integer) is

13 Y : bool ean;

14 begi n

15 if read _bus_status then

16 New Al't := 12;

17 Y := True;

18 el se

19 New Al't := 120;

20 end if;

21 if t hen -- Warning NIVL on “Y’ given by
22 -- the automati c net hodol ogy

23 New Al't := New Al't * 10;

24 end if;

25 end partial _init;

Release 2007a+ 94/292
Revision 4.2 vA

26 end Test;

In the example above, the automatic methodology filters all orange except:
e The orange at line 6. The associated message associated to this orange says
“Scal ar variable may underfl ow overfl ow on [conversion from
-2**31.. 2**31-1 to 0..9]”. Inthis case we have a typical conversion in a
smaller subtype and nothing around shows a defensive code against this robustness issue.
e The orange at line 21. The associated message associated to this orange says
“Local variable nay be not initialized”. In thiscase we have a typical
example which leads to a robustness issue if the right branch is not executed.

Activation and filter location:
In both mode of review (expert or assistant) the automatic methodology is always active.
Opening the Viewer on results, chose expert mode, select “Al pha” filter and then, clickingon “I / ?”

button associated to tool tip “Cl i ck to hi de orange not associated to additional
i nf or mat i on”, allows to show all oranges and only coming from the automatic methodology.

Release 2007a+ 95/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4.3. How to find a maximum number of bugs within an hour
reviewing oranges: selective orange review

Note Before reading this section, it is necessary to understand how the user might
conclude the status of an check. Thisisexplained in alater section.

Suppose, for example, that the user wishes to spend the first hour of the day reviewing an analysis which was
performed overnight. Thisis an approach which can be adopted to enhance the quality of code under
development, perhaps supported by more extensive analysis as the project nears completion.

Experience suggests that such an approach can highlight 5 bugs in orange checksin such atimescale: “finding 5
bugs an hour”

Related subjects:
4.3.1. How?

4.3.2. Why?

4.3.3. In practice...

4.3.4. Step by step

4.3.5. Which category of checks should | choosefirst?
4.3.6. Exhaustive orangereview at unit phase

Release 2007a+ 96/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
4.3.1. How?
Focus on modules which have the highest selectivity in the application, where selectivity isthe
ratio of (green + + red) / (total number of checks)

e Spend no more than 5 minutes per
. Review at least 50 checks an hour.

Release 2007a+ 97/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4.3.2. Why?

* |If PolySpace finds only one or two in amodule or function, thereisavery good
possibility that they are not caused by “basic imprecision”. Consequently, the concentration of bugs
in here will be higher than in those found elsewhere in the code.

* If you come across an which takes more than a few minutes to understand, it
might well be the result of inconclusive PolySpace analysis. To optimise the number of bugs found
in alimited time, you should move on to another check. A good rule of thumb isto spend no more
than 5 minutes on each check, remembering that the goal isto review at least 50 checks per hour to
maximise the number of bugs found.

Release 2007a+ 98/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4.3.3. In practice...

For any particular function, PolySpace may better at detecting some kinds of Run Time Errors than
others. For instance, the analysis of one function may yield imprecise results from the analysis of Non
Initialised Variables (NIV) but very precise results from the analysis of overflows (OVFL). In the
analysis of another function, the precise opposite may be true.

So, the “high selectivity focus’ should be applied to each Run Time Error category separately.

Release 2007a+ 99/292

Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.3.4. Step by step

Filter

1. Select onetype of RTE, such as Zero Division (ZDV) as shown in the example. Click on A | and
then click on the check type of interest (ZDV in the example)

el i CiOR: shE [MY owre [FEOAT dpser | we [kNTC | WTL | UNR
Tool bar for checks
Here, all RTEs are filtered except ZDV
. Choose files/packages containing only 1 or 2 of the selected kind.
. Proceed with a quick code review on each , Spending no more than 5 minutes on each.
The goal isto identify the as apotential bug, inconclusive check or data set issue, navigating

the code using the call tree and the dictionary. If the check proves too complicated to explain, it may well be

the result of basic imprecision.
e Oncethisjob done, the user can select the “Verified” checkbox in the PolySpace Viewer, and
put an explanation of the check in the comment field (for instance, “inconclusive’, or “data set
issue” when calibration of <x> is set greater than 1007, ...)

. Select another type of RTE and repeat step 1-4.

Release 2007a+ 100/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

4.3.5. Which category of checks should | choose first?
The following sequence is recommended.
. Start with the four categories found to be the most likely to yield bugs, which are described in the

following sections.

* Next, use the Betafilter which will highlight the remaining categories most likely to include
any remaining critical Run Time Errors.

» Finally, complete the remaining checks as time permits.

The impact made by the use of Ada coding rulesis huge, because they reduce complexity - akey factor in
limiting or ange checks due to basic imprecision. The Ada constructions impacting each of the four are listed
below.

» Potential bug or data set issue. These are or ange checks representing genuine problems.

* Inconclusive check. These are or ange checks which mostly highlight design issues, not
addressed by this section.
e Basicimprecision.

* Unspecified Standard behaviour
* Complexity
* Approximations made by the tool on specific constructions

Release 2007a+ 101/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.3.6. Exhaustive orange review at unit phase

Related subjects:
4.3.6.1. Without coding rules

4.3.6.2. With coding rules

Release 2007a+ 102/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4.3.6.1. Without coding rules

An exhaustive orange review progresses at atypical rate of 50 or ange checks per hour. An hour spent on an
exhaustive check review is different to an hour spent on a selective orange review in several significant ways.

e Time

o Thefirst 10 minutes of the exhaustive check will be dedicated to the classification of 2/3 of
the orange as false anomalies.
0 Thelast 40 minutes will be used to track more complex bugs.

* Cost:

0 80% of the orange checkswill require only afew seconds of effort before a conclusion can
be reached. These are not integration bugs, so tracking the cause of an or ange check is often
much faster than the same activity in alarger piece of code.

o0 Thetypical time spent reviewing each or ange check would be about 1 minute.

Release 2007a+

103/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.3.6.2. With coding rules
The number of spurious or ange checks per file strongly depends on coding styles within the project.

If the code follows the some rules (using subtype instead of plain type for instance, etc.), the count of checks per
filewill typically decrease to 3 orange and 3 gr ey checks, hiding at least one bug between them.

The review of the PolySpace results generated by a unit analysis would normally take no more than 15 minutes.
See some of coding rules recommended by PolySpace in “ Coding rules’ paragraph.

Release 2007a+ 104/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.4. Coloured source code for Ada

Related subjects:
4.4.1. Non-Initialized Variable: NIV/NIVL

4.4.2. Division by zero: ZDV

4.4.3. Arithmetic Exceptions. EXCP

4.4.4. Scalar and Float Underflow/Overflow : UOVFEL
4.4.5. Scalar and Float Overflow: OVFL

4.4.6. Scalar and Float Underflow: UNFL

4.4.7. Attributes check: COR

4.4.8. Array length check: COR

4.4.9. DIGITSvalue check: COR

4.4.10. DELTA valuelength check: COR
4.4.11. Static range and values check: COR
4.4.12. Discriminant check: COR

4.4.13. Component check: COR

4.4.14. Dimension versus definition check: COR
4.4.15. Aggr egate ver sus definition check: COR
4.4.16. Aggregate array length check: COR
4.4.17. Sub-Aggregates dimension check: COR
4.4.18. Characters check: COR

4.4.19. Accessibility level on accesstype: COR
4.4.20. Valid variable: COR

4.4.21. Explicit dereference of a null pointer: COR
4.4.22. Accessibility of atagged type: COR
4.4.23. Power Arithmetic. POW

4.4.24. User Assertion: ASRT

4.4.25. Non Terminations. Callsand L oops
4.4.26. Unreachable code: UNR

4.4.27. Value on Assignment: VOA

4.4.28. Ingpection Points: |PT

Release 2007a+ 105/292
Revision 4.2 vA

PonSpace

TECHMNOLOGIES
Previous Back to table of contents

Next

4.4.1. Non-Initialized Variable: NIV/NIVL

Check to establish whether avariable isinitialized before being read.

ADA example

1 package NIV is

2 type Pixel is

3 record

4 X . Integer;

5 Y : Integer;

6 end record;

7 procedure MAIN

8 functi on Random Bool return Bool ean;

9 end NV,

10

11 package body NIV is

12

13 type TwentyFloat is array (Integer range 1.. 20) of Float;
14

15 procedure AddPi xel Val ue(Vpi xel : Pixel) is

16 Z . |Integer;

17 begi n

18 if (Vpixel.X < 3) then

19 Z .= Vpixel.Y + Vpixel . X; -- NIV error: Y field not initialized
20 end if;

21 end AddPi xel Val ue;

22

23 procedure MAIN is

24 B : Twentyfl oat;

25 Vpi xel : Pixel

26 begi n

27 i f (Random Bool) then

28 Vpixel . X := 1

29 AddPi xel Val ue(Vpi xel); -- NIC Error: because of NIV error in cal
30 end if;

31

32 for I in 2 .. Twentyfloat'Last |oop

33 if ((I nmod 2) = 0) then

34 B(l) := 0.0;

35 end if;

36 end | oop;

37 B(2) := B(4) (5); -- NIV Warni ng because B(odd) not initialized
38 end MAIN;

39

40 end NV,

Explanation:

Release 2007a+
Revision 4.2 vA

106/292

The result of the addition is unknown at line 19 because Vpixel.Y isnot initialized (code on "+" operator). In addition,
line 37 shows how PolySpace prompts the user to investigate further (orange NIV warning on B(I)) when al fields have
not been initialized.

NIV check versusIN OUT parameter mode

Standard Ada83 says. For a scalar parameter, the above effects are achieved by copy: at the start of each call, if the mode is
inor in out, the value of the actual parameter is copied into the associated formal parameter; then after normal completion
of the subprogram body, if the modeisin out or out, the value of the formal parameter is copied back into the associated
actual parameter.

Clearly, in out parameters necessitate initialisation before call.

ADA example

1 package NIVIO is

2 procedure MAIN

3 functi on Random Bool ean return Bool ean;

4 end NI VI QO

5

6 package body NIVIO s

7

8 Y : Integer := 3

9 procedure N v_Not_Dangerous(X : in out integer) is
10 begi n

11 X 1= 2

12 if (Y >2) then

13 Y = X + 3;

14 end if ;

15 end Ni v_Not Dangerous;

16

17 procedure N v_Dangerous(X : in out integer) is
18 begi n

19 if (Y /= 3) then

20 Y := X + 3;

21 end if ;

22 end Ni v_Danger ous;

23

24 procedure MAIN is

25 X : Integer;

26 begi n

27 i f (Random Bool ean) then

28 Ni v_Danger ous(X); -- NIV ERROR certainly dangerous
29 end if ;

30 i f (Random Bool ean) then

31 Ni v_Not _danger ous(X); -- NIV ERROR not danger ous
32 End if ;

33 end MAI N

34

35 end NI VIG

Explanation:

In the previous example, as shown at line 28, Verifier highlights a dangerous not initialized variable. Even it is not
dangerous, as shown in the Niv_Not_Dangerous procedure, Verifier also highlights the non initialized variable at line 30.
To be more permissive with standard, the -continue-with-in-out-niv option permits to continue the analysis of the rest of
sources even red error staysin place at line 28 and 31.

Release 2007a+ 107/292
Revision 4.2 vA

Related subjects:
4.4.1.1. Pragma interface/import

4.4.1.2. Type access variables
4.4.1.3. Address clauses

Release 2007a+ 108/292
Revision 4.2 vA

Previous

PonSp

ace

TECHNOLOGIES

Back to table of contents

Next

4.4.1.1. Pragma interface/import

The following table illustrates how variables are regarded when:

e A pragmais used to interface the code;
 Anaddressclauseis applied;
¢ A pointer typeis declared.

variable type

records and other types

integer types

Function

pragma interface (C,
vari abl e_nane)
pragma i nport (C,
var i abl e_nane)

. green NIV
. Permanent
random value

. No NIV check
. Permanent
random value

. same behaviour as -
automatic-stubbing

. in/out and out
variables are written within
their entire type range

In this case, a permanent random value means that the variable is always equivalent to the full range of itstype. It is almost equivalent
to avolatile variable except for the colour of the NIV.

Release 2007a+
Revision 4.2 vA

109/292

Previous

PonSp

ace

TECHNOLOGIES

Back to table of contents Next

4.4.1.2. Type access variables

The following table illustrates how variables are analysed by PolySpace when atype access is used:

variable type

records and other types

integer types

Type a_new type is

access anot her _type;

e orange NIV

. Permanent
random value

. No NIV check

. Permanent random
value

In this case, a Permanent Random Variable is exactly equivalent to avolatile variable - -that is, it is assumed that the
value may have change within its whole range between any read/write accesses.

Release 2007a+
Revision 4.2 vA

110/292

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.4.1.3. Address clauses

The following table illustrates how variables are regarded by PolySpace where an address clause is used.

variable type
records and other types integer types
Address clause .
for variabl e_nanme use at 16#1234abcd#; » NoNIV check
. Permanent random
_ . Permanent random value
for variable_name use at other'address; value

In this case, a Permanent Random Variable is exactly equivalent to avolatile variable - that is, it is assumed that the value
can have been changed to anywhere within its whole range between one read access and the next.

Release 2007a+ 111/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.4.2. Division by zero: ZDV

Check to establish whether the right operand of adivision (denominator) is different to 0[.0].

ADA example

1 package ZDV is

2 functi on Random Bool return Bool ean;

3 procedure ZDVS (X : Integer);

4 procedure ZDVF (Z : Float);

5 procedure MAIN

6 end ZDV

7

8 package body ZDV is

9

10 procedure ZDVS(X : Integer) is

11 | : Integer;

12 J . Integer := 1,

13 begi n

14 I :=1024 / (J-X); -- ZDV ERROR Scal ar Division by Zero occurs
15 end ZDVS;

16

17 procedure ZDVF(Z : Float) is

18 | : Float;

19 J: Float := 1.0;

20 begi n

21 | :=1024.0 / (J-2); -- ZDV ERROR float Division by Zero occurs
22 end ZDVF;

23

24 procedure MAIN is

25 begi n

26 if (random bool) then

27 ZDVS(1); -- NIC ERROR ZDV. ZDVS call never term nates
28 end if ;

29 i f (Random Bool) then

30 ZDVF(1.0); -- NIC ERROR ZDV. ZDVF call never term nates
31 end if;

32 end MAIN;

33

34 end ZDV,

35

36

37

Release 2007a+ 112/292
Revision 4.2 vA

PonSpace

TECHHOLOGIES
Previous Back to table of contents Next

4.4.3. Arithmetic Exceptions: EXCP
Check to establish whether standard arithmetic functions are used with good arguments:
1. Argument of sgrt must be positive
2. Argument of tan must be different from pi/2 modulo pi
3. Argument of log must be strictly positive
4. Argument of acos and asin must be within [-1..1]
5

. Argument of exp must be less than or equal to a specific value which depends on the processor target: 709 for 64/32 bit targets and
88 for 16 hit targets

Basically, an error occursif an input argument is outside the domain over which the mathematical function is defined.
ADA Example:

1

2 Wth Ada. Nunerics; Use Ada. Nunerics;

3 Wth Ada. Numerics. Aux; Use Ada. Nunerics. Aux;

4

5 package EXCP is

6 functi on Bool Random return Bool ean;

7 procedure MAIN;

8 end EXCP;

9

10 package body EXCP is

11

12 -- inplenmentati on dependant in Ada. Numerics. Aux: subtype Double is Long_Fl oat;
13 MPI 2 : constant Double := Pi/2.0; -- pil/2

14

15 procedure MAIN is

16 | Res, ILeft, IRight : Integer;

17 Dbl _Random : Doubl €;

18 pragma Vol atil e_ada. ht m (dbl _Random ;

19

20 SP : Double := 1

21 P : Double := 1

22 SN : Double := |

23 N : Double := 1

24 NO TRI G VAL : Double := 1

25 res : Doubl e;

26 Fres : Long Fl oat;

27 begin

28 -- assert is used to redefine range values of a variabl e.

29 assert (SP > 0.0);

30 assert (P >= 0.0);

31 assert (SN < 0.0);

32 assert(N <= 0.0);

33 assert (NOTRIG VAL < -1.0 or NOTRIG VAL > 1.0);

34

35 i f (bool _randonm then

36 res := sqrt(sn); -- EXCP ERROR. argunent of SQRT nust be positive.
37 end if ;

38 i f (bool _randon) then

39 res .= (MPI_2); -- EXCP Warning: Float argunment of TAN nmay be
Release 2007a+ 113292

Revision 4.2 vA

40

different than pi/2 nodul o

pi .

ASIN i s not

ACCS i s not

in-1..1

in-1..1

LOG is not strictly

EXP i s not

41 end if;

42 i f (bool randon) then

43 res := asin(no_trig_val); -- EXCP ERROR float argument
44 end if;

45 i f (bool randon) then

46 res := acos(no_trig_val); -- EXCP ERROR float argument
47 end if;

48 i f (bool _randon) then

49 res .= log(n); -- EXCP ERROR: fl oat argumnent
positive

50 end if;

51 i f (bool _randon) then

52 res .= exp(710.0); -- EXCP ERROR: fl oat argumnent
than or equal to 709 or 88

53 end if;

54

55 -- range results on trigononetric functions

56 i f (Bool Randon) then

57 Res := Sin (); -- -1 <= Res <=1

58 Res := Cos (); -- -1 <= Res <=1

59 Res : = atan() -- -pil/2 <= Res <= pi/2

60 end if;

61

62 -- Arithmetic functions where there is no check currently inplenmented
63 i f (Bool _Randon) then

64 Res : = cosh();

65 Res : = tanh();

66 end if;

67 end MAIN;

68 end EXCP;

Explanation:

| ess

The arithmetic functions sgrt, tan, sin, cos, asin, acos, atan and log are derived directly from mathematical definitions of functions.
Standard cosh and tanh hyperbolic functions are currently assumed to return the full range of values mathematically possible, irrespective of
the input parameters. The Ada83 standard gives more details about domain and range error for each maths function.

Release 2007a+
Revision 4.2 vA

114/292

PolyS pace

Previous Back to table of contents Next

4.4.4. Scalar and Float Underflow/Overflow : UOVFL

Check to simultaneously establish whether an arithmetic expression on afloat value overflows and/or underflows.
ADA Example:

1 package UOVFL is

2 function Bool Random return Bool ean

3 procedure MNAIN,

4 end UOVFL;

5

6 package body UOVFL is

7

8 procedure MAIN is

9 I : Integer;

10 Dval ue : Long_fl oat;

11 begi n

12 i f (Bool _Random then

13 | = 2**30;

14 I =2 * (I - 1); -- integer UOVFL verified on "*" and "-"
15 end |f

16 i f (Bool Random) then

17 Dval ue : = Long fl oat (Fl oat' Last);

18 Dvalue := 2.0 * Dvalue + 1.0; -- float UOVFL verified on "*" and "+"
19 end if;

20 end MAIN;

21 end UOVFL;

Explanation:

PolySpace can detect that there is neither an underflow nor an overflow on * and - operators at line 16.

At line 20, thereisan OVFL error. Asaresult, Verifier cannot evaluate the overflow and the underflow of the expression with
the"+" operator, and so an UOVFL unreachable check results (see also UNR checks).

Release 2007a+ 115/292
Revision 4.2 vA

y E:Hnommzs
Previous Back to table of contents

4.4.5. Scalar and Float Overflow: OVFL

Check to establish whether an arithmetic expression overflows. Thisisascaar check with integer types and afloat check for floating point

expressions.

An overflow is also detected should an array index_ada.htm be out of bounds.

ADA Example:

1 package OVFL is

2 procedure MNAIN;

3 function Bool Random return Bool ean;

4 end OVFL;

5

6 package body OVFL is

-

8 procedure OVFL_ARRAY is

9 A : array(1..20) of Float;

10 J : Integer;

11 begi n

12 for | in AFirst .. A Last |oop

13 A(l) :=0.0 ;

14 J =1 + 1

15 end | oop;

16 A(J) :=0.0; -- OVFL ERROR Overflow array index_ada. htm
17 end OVFL_ARRAY;

18

19 procedure OVFL_ARI THMETIC i s

20 I . Integer;

21 FVval ue : Fl oat;

22 begin

23

24 i f (Bool _Randon) then

25 | = 2**30;

26 I =2 * (I - 1) +2; -- OVFL ERROR: 2**31 is an overfl ow val ue for
I nt eger

27 end if;

28 i f (Bool _Randon) then

29 FVal ue : = Fl oat' Last;

30 Fvalue := 2.0 * Fvalue + 1.0; -- OVFL ERROR float variable is overflow
31 end if;

32 end OVFL_ARI THVETI C,

33

34 procedure MAIN is

35 begin

36 i f (Bool Randon) then OVFL_ARRAY; end if; -- NTC propagation because of OVFL
ERRCOR

37 i f (Bool _Randon) then OVFL_ARI THMVETIC, end if;
38 end MAIN;

39

40 end OVFL;

41

42

Explanation:

In Ada, the bounds of an array can be considered with reference to a new type or subtype of an existing one. Line 16 shows an overflow

error resulting from an attempt to access element 21 in an array subtype of range 1..20.

Release 2007a+
Revision 4.2 vA

116/292

A different example is shown by the overflow on line 28, where adding 1 to Integer'Last (the maximum integer value being 2**31-1 on a
32 hit architecture platform). Similarly, if OVFL_ARITHMETIC.FValue represents the max floating value, 2* FValue cannot be represented
with the same type and so raises an overflow at line 32.

Release 2007a+ 117/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.4.6. Scalar and Float Underflow: UNFL

Check to establish whether an arithmetic expression underflows. Thisisascalar check with integer types and a float check for floating
point expressions.
An underflow is also detected should an array index_ada.htm be out of bounds.

ADA Example:

1 package UNFL is

2 functi on Bool Random return Bool ean

3 procedure MAIN

4 end UNFL;

5

6 package body UNFL is

7

8 procedure UNFL_ARRAY is

9 A : array(l..20) of Float;

10 J : Integer;

11 begi n

12 for | in AlLast.. A First |oop

13 A(l) := 0.0 ;

14 J:=1 - 1;

15 end | oop;

16 A(J) := 0.0; -- UNFL ERROR underfl ow array index_ada. htm
17 end UNFL_ARRAY

18

19 procedure UNFL_ARI THVETIC i s

20 I : Integer;

21 Fval ue : Fl oat;

22 begi n

23

24 i f (Bool _Randon) then

25 | = -2*%*31

26 I =1 - 1; -- UNFL ERROR. -2**31-1 is integer underflow
27 end if;

28 i f (Bool Randon) then

29 Fvalue : = Float' First;

30 Fvalue := -2.0 * FValue; -- UNFL ERROR float variable is overfl ow
31 end if;

32 end UNFL_ARI THVETI C

33

34 procedure MAIN is

35 begi n

36 i f (Bool Randon) then UNFL_ARRAY; end if; -- NTC propagati on because of UNFL
ERRCOR

37 i f (Bool _Randon) then UNFL_ARI THMETIC, end if;
38 end MAIN

39

40 end UNFL;

Explanation:

In Ada, the bounds of an array can be considered with reference to a new type or subtype of an existing one. Line 16 shows an underflow
error resulting from an attempt to access element 0 in an array subtype of range 1..20.

A different example is shown by the underflow on line 28, where subtracting 1 from Integer'First (the minimum integer value being -
2**31-1 on a 32 bit architecture platform). Similarly, if UNFL_ARITHMETIC.FValue represents the minimum floating value, -2* FValue

Release 2007a+ 118/292
Revision 4.2 vA

cannot be represented with the same type and so raises an underflow at line 33.

Release 2007a+ 119/292
Revision 4.2 vA

y E:Hnommzs
Previous Back to table of contents Next

4.4.7. Attributes check: COR

PolySpace encourages the user to investigate the attributes SUCC, PRED, VALUE and SIZE further, thanks to a COR check (failure of
CORrectness condition).

ADA example:

1

2 package CORS is

3 function Bool Random return Bool ean;

4 procedure MNAIN;

5 function INT_VALUE (S : String) return |nteger;

6 type PSTCOLORS is (ORANGE, RED, GREY, GREEN);

7 type ADCFUZZY is (LOW MEDIUM HI GH);

8 end COCRS;

9

10 package body CORS is

11

12 type STR_ ENUM is (AA, BB);

13

14 function INT_VALUE (S : String) return Integer is

15 X : Integer;

16 begi n

17 X := Integer' Value (9S); -- COR Warning: Value parameter mght not be in range
i nt eger

18 return X

19 end | NT_VALUE;

20

21 procedure MAIN is

22 E . PSTCOLORS : = GREEN;

23 F : PSTCOLORS;

24 ADCVAL : ADCFUZZY := ADCFUZZY' First;

25 Strval : STR_ENUM

26 X : Integer;

27 begin

28 i f (Bool _Randon) then

29 F := PSTCOLORS PRED(E); -- COR Verified: Pred attribute is not used on the
first elenment of pstcolors

30 E : = PSTCOLORS SUCC(E); -- COR ERROR Succ attribute is used on the | ast

el ement of pstcolors

31 end if;

32 i f (Bool Randon) then

33 ADCVAL : = ADCFUZZY' PRED(ADCVAL); -- COR ERROR Pred attribute is used on the
first element of adcfuzzy

34 end if ;

35

36 StrVal := STR_ENUM Val ue ("AA"); -- COR Varning: Value paraneter mght not be
in range str_enum

37 StrVval := STR_ENUM Val ue ("AC'"); -- COR Warning: Value paraneter mght not be
in range str_enum

38 X = INT_VALUE ("123"); -- Information on X; -2**31<=[expr]<=2**31-1
39 end MAIN

40 end CORS;

41

Explanation :

Release 2007a+ 120292

Revision 4.2 vA

At line 36 and 37, the COR warning (orange) prompts the user to check wether the VALUE éattribute is correct or not.

Infact, standard ADA generates a"CONSTRAINT_ERROR" exception when the string does not correspond to one of the possible values
of the type.

Also note that in this case, Verifier results assume the full possible range of the returned type, irrespective of the input parameters. In this
example, strVal hasarangein [aa,bb] and X in [Integer'First, Integer'Last].

Theincorrect use of PRED and SUCC attributes on typeis put forward by PolySpace.

SIZE attributeerror: COR

1

2 wi th Ada. Text | o; use Ada. Text | o;

3

4 package SIZE is

5 PROCEDURE Mi n;

6 end Sl ZE;

7

8 PACKAGE BODY SIZE IS

9

10 TYPE unSTab is array (Integer range <>) of |nteger;
11

12 PROCEDURE MAIN i s

13 X : Integer;

14 BEG N

15 X := unSTab' Si ze; -- COR ERROR. Size attribute nust not be used for
unconstrai ned array

16 Put _Line (Integer'lmage (X));

17 END MAI N;

18

19 END SI ZE;

Explanation:
At line 15, PolySpace shows the error on the S ZE attribute. In this case, it cannot be used on an unconstrained array.

Release 2007a+ 121/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.4.8. Array length check: COR

Checks the correctness condition of an array length, including Strings.

ADA example:

1

2 wi t h Dnane;

3 package CORL is

4 functi on Bool Random return Bool ean;

5 type Name_Type is array (1 .. 6) of Character;

6 procedure Put (C : Character);

7 procedure Put (S : String);

8 procedure MNAIN;

9 end CORL;

10

11 package body CORL is

12

13 STR_CST : constant NAME_TYPE := "String";

14

15 procedure MAIN is

16 Strl,Str2,Str3 : String(1..6);

17 Arrl : array(l..10) of Integer;

18 begi n

19

20 i f (Bool _Randon) then

21 Strl := "abcdefg"; -- COR ERROR: Too nany el enents in array, nust
have 6

22 end if;

23 i f (Bool Randon) then

24 Arrl :=(1,2,3,4,5,6,7,8,9); -- COR ERROR Not enough elements in array, nust
have 10

25 end if ;

26 i f (Bool _Randon) then

27 Strl := "abcdef";

28 Str2 = "ghijkl";

29 Str3 := Strl Str2; -- COR Warning: Length mght not be conpatible
with 1 .. 6

30 Put (Str3);

31 i f Bool Random t hen

32 DNane. DI SPLAY_NAME (DNAME. NAME_TYPE(STR _CST)); -- COR ERROR: String Length
is not correct, nust be 4

33 end if;

34 end i f ;

35 end MAIN;

36

37 end CORL;

38

39 package DNane is

40 type Name_Type is array (1 .. 4) of Character;

41 PROCEDURE DI SPLAY_NAME (Str : Nane_Type);

42 end DNane;

43

Explanation:

Release 2007a+ 122292

Revision 4.2 vA

At lines 21 and 24, PolySpace gives the exact value needed to match the two arrays. On the other hand, PolySpace prompts the user to
investigate the compatibility of concatenated arrays, by means of an orange check at line 29.
Moreover at line 32, the string length is being put forward even if it depends on another package.

Release 2007a+ 123/292
Revision 4.2 vA

y EC HNOLOGIES
Previous Back to table of contents Next

4.49. DIGITS value check: COR

Checks the length of DIGITS constructions.

ADA example:

1 package DIAT is

2 procedure MAIN

3 end DIAT;

4

5 package body DIG@ T is -- NIC ERROR. COR propagation
6

7 type T is digits 4 range 0.0 .. 100.0

8 subtype T1 is T

9 digits 1000 range 0.0 .. 100.0; -- COR ERROR digits value is too |large, highest
possible value is 4

10

11 procedure MAIN is

12 begi n

13 nul | ;

14 end MAI N

15 end DIAT;

Explanation:
At line 9, PolySpace shows an error on the digits value. It indicates in its associated message the highest available value, 4 in this case.

Release 2007a+ 124/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.4.10. DELTA value length check: COR

Checks the length of DELTA constructions.

ADA example:

1

2 package FI XED is

3 procedure NAIN;

4 procedure FAILED(STR : STRI NG ;

5 function Random return Bool ean;

6 end FI XED,

7

8 package body FI XED i s

9

10 PROCEDURE FI XED DELTA | S

11

12 GENERI C

13 TYPE FI X | S DELTA <>;

14 PROCEDURE PROC (STR : STRING ;

15

16 PROCEDURE PROC (STR : STRING IS

17 SUBTYPE SFI X IS FI X DELTA 0.1 RANGE -1.0 .. 1.0; -- COR ERROR delta is too
snmall, smallest possible value is 0.5E0Q

18 BEG N

19 FAI LED ("NO EXCEPTION RAISED FOR " & STR);
20 END PRCC;

21

22 BEG N

23

24 | F RANDOM THEN

25 DECLARE

26 TYPE NFI X IS DELTA 0.5 RANCGE -2.0 .. 2.0;
27 PROCEDURE NPRCC | S NEW PROC (NFI X) ;
28 BEG N

29 NPROC ("1 NCOVPATI BLE DELTA"); -- NTC ERROR: propagation of
COR Error

30 END;

31 END | F ;

32

33 END FI XED_DELTA,;

34

35 procedure MAIN is

36 begi n

37 FI XED_DELTA;

38 end MAIN;

39

40 end FI XED,

Explanation:

At line 17, Polyspace Verifier shows an error on the DELTA value. The message gives the smallest available value, 0.5 in this case.

Release 2007a+ 125/292
Revision 4.2 vA

PonSpace

TECHHMOLOGIES
Previous Back to table of contents Next

4.4.11. Static range and values check: COR

Checks if constant values and variable values correspond to their range definition and construction.

ADA example:

1

2 package SRANGE i s

3 procedure Mai n;

4 function IsNatural return Bool ean;

5

6 SUBTYPE | NT IS | NTEGER RANGE 1 .. 3;

7 TYPE | NF_ARRAY | S ARRAY(I NT RANGE <>, |INT RANGE <>) OF | NTEGER;

8 SUBTYPE DI NT IS I NTEGER RANGE 0 .. 10;

9 end SRANGE;

10

11 package body SRANGE is

12

13 TYPE SENSOR | S NEW | NTEGER RANGE 0 .. 10;

14

15 REC2(D : DINT := 1) | S RECORD -- COR Warning: Value mght not be in range
1.. 3

16 U: INFARRAY(1 .. Db D.. 3) :=(1.. D=>

17 (D.. 3 =>1));

18 END RECORD;

19 TYPE REC3(D : DINT :=1) IS RECORD -- COR Error: Value is not inrange 1 .. 3
20 U: INFARRAY(1 .. Db D.. 3) := (1 .. D=>

21 (D.. 3 =>1));

22 END RECORD;

23

24 PROCEDURE VALUE_RANGE i s

25 VAL : | NTEGER;

26 pragma Vol atil e(VAL);

27 SLICE A2 : REC(); -- NIV and COR warni ng: Value mght not be in range 0 ..
10

28 SLICE A3 : REC3(4); -- Unreacheabl e code: because of COR Error in REC3
29 BEG N

30 NULL;

31 END VALUE_RANGE;

32

33 PROCEDURE MAIN i s

34 Di gval : Sensor;

35 begi n

36 if I'sNatural then

37 decl are

38 TYPE Sub_sensor is new Natural range -1 .. 5; -- COR Error: Static value is
not in range of 0 .. 16#7FFF_FFFF#

39 begin

40 nul | ;

41 end;

42 end if;

43 if IsNatural then

44 decl are

45 TYPE NEW ARRAY | S ARRAY (NATURAL RANGE <>) OF | NTEGER

46 subtype Sub_Sensor is New Array (Integer RANGE -1 .. 5); -- COR Error:
Release 2007a+ 126/292

Revision 4.2 vA

Static range is not in range 0 .. 16#7FFF_FFFF#

47 begi n

48 nul | ;

49 end;

50 end if ;

51 if IsNatural then

52 VALUE_RANGE; -- NIC Error:
53 el se

54 Digval := 11; -- COR Error:
55 end if;

56 END Mai n;

57 end SRANGE;

58

59

Explanation:

propagation of the COR error in VALUE RANGE

Value is not in range of 0 .. 10

PolySpace checks the compatibility between range and value. Moreover, it tellsin its associated message the expected length.
Example is shown on the record types REC2 and REC3. Verifier cannot determine the exact value of the volatile variable VAL at line 27,

because some paths lead to a

definition, othersto ared one. The resultsis an orange warning at line 15.

At line 19, 38, 46 and 54 PolySpace is able to prompts errors on out of range values.

Release 2007a+
Revision 4.2 vA

127/292

Previous

PonSp

Back to table of contents

ace

TECHNOLOGIES

4.4.12. Discriminant check: COR

Checks the usage of adiscriminant in arecord declaration.

"abcdef");

"abcde");

ADA example:

1

2 package DI SC is

3 PROCEDURE MAI N;

4

5 TYPE T_Record(A: Integer) is record --
16#7FFF_FFFF#

6 Sa: String(1..A);

7 END RECORD;

8 end D SC

9

10 package body DISCis

11

12 PROCEDURE MAIN i s

13 begin

14 decl are

15 T_STRI NG6 T_RECORD(6) := (6,
conpati bl e

16 T StringQ her T_RECORD(6) ;
conmpati bl e

17 T_STRI NG5 T_RECORD(5) := (5,
conpati bl e

18 begi n

19 T _StringQ her := T _STRI NG5;
conpati bl e

20 T string5 = T _Record(T_STRI NGB) ;
not conpatible

21 end;

22 END Mai n;

23

24 END DI SC;

Explanation:

COR Verifi ed:

COR Verified:

COR Verifi ed:

COR Verifi ed:

COR ERROR:

COR Verified: Value is in range of 1 ..

Di scri m nant

Di scri m nant

Di scri m nant

Di scri m nant

Di scri m nant

At line 20, PolySpace shows an error while using a discriminant. T_String6 discriminant of length 6 cannot match T_String5 discriminant

of length 5.

Release 2007a+
Revision 4.2 vA

128/292

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.4.13. Component check: COR

Checks whether each component of a record given is being used accurately.

ADA example:

1 package COW is

2

3 PROCEDURE MAI N;

4 SUBTYPE DI NT IS | NTEGER RANGE 0. . 1;

5 TYPE COMP_RECORD (D: DINT := 0) is record
6 X : | NTEGER;

7 CASE D IS

8 VHEN 0 => ZERO : BOOLEAN;

9 VWHEN 1 => UN : | NTEGER

10 END CASE;

11 END RECORD;

12

13 end COVP;

14

15 package body COWP is

16

17 PROCEDURE MAI N i s

18 CZERO : COWP_RECORD(0);

19 BEG N

20 CZERO. X = 0;

21 CZERO. ZERO : = FALSE; -- COR Verified: zero is a conmponent of the variable
22 CZERO. UN = CZERO X; -- COR ERROR un is not a conponent of the variable
23 END MAI N;

24 END COWVP;

25

Explanation:

At line 22, Polyspace Verifier shows an error. According to the declaration of CZERO (line 18), UN is not a valid field
record component of the variable.

Release 2007a+ 129/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.4.14. Dimension versus definition check: COR

Checks the compatibility of array dimension in relation to their definition.

ADA example:

1 package DI MDEF i s

2 PROCEDURE MAI N,;

3 FUNCTI ON Random RETURN bool ean;

4 end DI MDEF;

5

6 package body DI MDEF is

7

8 SUBTYPE ST | S | NTEGER RANGE 4 .. 8;

9 TYPE BASE | S ARRAY(ST RANGE <>, ST RANGE <>) OF | NTEGER;
10 SUBTYPE TBASE IS BASE(5 .. 7, 5 .. 7);

11

12 FUNCTI ON | DENT_I NT(VAL : | NTEGER) RETURN | NTEGER 1S

13 BEG N

14 RETURN VAL;

15 END | DENT_I NT;

16

17 PROCEDURE MAIN | S

18 NEWARRAY . TBASE;

19 BEG N

20 | F RANDOM THEN

21 NEWARRAY := (7 .. IDENT_INT(9) => (5 .. 7 =>4)); -- COR Error: Dinmension is
not conpatible with definition

22 END | F;

23 | F Random THEN

24 NEWARRAY := (5 .. 7 => (IDENT_INT(3) .. 5 =>05)); -- CORError: Dinension is
not conpatible with definition

25 END | F;

26 END MAI N;

27

28 END DI MDEF;
Explanation:

At line 21 and 24, is put forward by PolySpace Verifier the incorrect dimension of the double array Newarray of type TBASE.

Release 2007a+ 130/292
Revision 4.2 vA

Previous

PonSpace
TECHMOLOGIES
Back to table of contents

4.4.15. Aggregate versus definition check: COR

Checks the correctness condition on aggregate declaration in relation to their definition.

PROCEDURE COMMVENT (A: STRING ;
functi on RANDOM r et urn BOOLEAN;

I NTEGER : = 5) |I'S RECORD

| NTEGER) | S RECORD

FUNCTI ON | DENT_I NT(VAL : | NTEGER) RETURN I NTEGER | S

PROCEDURE AGGDEF_INIT is -- AGGREGATE | NI Tl ALI SATI ON

((DI'SC => I DENT_INT(7)), (DISC => I DENT_INT(7)));

ADA example:

1

2 package AGGDEF is

3 PROCEDURE MAI N;

4

5

6 end AGGDEF;

7

8 package body AGGDEF is
9

10 TYPE RECL (DI SC :
11 NULL;

12 END RECORD;

13

14 TYPE REC2 (DI SC :
15 NULL;

16 END RECORD;

17

18 TYPE REC3 i s RECORD
19 COW1l : RECL(6);
20 COWP2 : REC2(6);
21 END RECORD;

22

23

24 BEG N

25 RETURN VAL;

26 END | DENT_I NT,;

27

28

29 OBJ3 : RECS;

30 BEG N

31 if random then
32 oBJ3 : =

33

not conpatible with definition
34 end if;

35

IF OBJ3 = ((DISC => 7), (DISC => 7)) then
not conpatible with definition
COWENT (" PREVENTI NG DEAD VARI ABLE COPTI M ZATI ON') ;

36

37 END | F;

38 END AGGDEF I NIT;
39

40 PROCEDURE MAIN | S
41 BEG N

42 AGEDEF INIT; -
43 END MAI N,

44 end AGGDEF;
Explanation:

Release 2007a+
Revision 4.2 vA

NTC ERROR: propagati on of COR ERROR

COR ERROR: Aggregate is

COR ERROR Aggregate is

131/292

At line 33 and 35, PolySpace shows the incompatible aggregate declaration on OBJ3. The aggregate definition with a
discriminant of value 6, is not compatible with a discriminant of value 7.

Release 2007a+ 132/292
Revision 4.2 vA

PonSpace

TECHHOLOGIES

Previous Back to table of contents Next

4.4.16. Aggregate array length check: COR

Checksthe length for array aggregate.

ADA example:

1 package AGELEN is

2 PROCEDURE MAI N;

3 PROCEDURE COMMVENT(A: STRI NG ;

4 end AGGLEN,;

5

6 package body AGGLEN is

7

8 SUBTYPE SLENGTH IS | NTEGER RANGE 1..5;
9 TYPE SL_ARR | S ARRAY (SLENGTH RANCE <>) OF | NTEGER;
10

11 F1_CONS : INTEGER : = 2;

12 FUNCTI ON FUNC1 RETURN I NTEGER | S

13 BEG N

14 F1_CONS := F1_CONS - 1,

15 RETURN F1_CONS;

16 END FUNCI;

17

18

19 TYPE CONSR (DI SC : INTEGER := 1) IS
20 RECORD

21 FIELDL : SL_ARR (FUNC1 .. DI SC); -- FUNC1 EVALUATED.
22 END RECORD;

23

24 PROCEDURE MAIN | S

25

26 BEG N

27 DECLARE

28 TYPE ACC_CONSR | S ACCESS CONSR;
29 X : ACC_CONSR;

30 BEG N

31 X = NEW CONSR;

32 BEG N

33 IF X.ALL /= (3, (5 => 1)) THEN -- COR ERROR Illegal Length for array
aggregate

34 COMMENT ("1 RRELEVANT");
35 END | F;

36 END;

37 END;

38 END MAIN;

39

40 END AGGLEN,

Explanation:
At line 33, PolySpace shows an error. The static aggregate length is not compatible with the definition of X at line 31.

Release 2007a+ 133/292
Revision 4.2 vA

y E:Hnommzs
Previous Back to table of contents Next

4.4.17. Sub-Aggregates dimension check: COR

Checks the dimension of sub-aggregates.

ADA example:

1

2 package SUBDIM i s

3 PROCEDURE MAI N;

4 FUNCTI ON EQUAL (A : Integer; B : Integer) return Bool ean;
5 end SUBDI M

6

7 package body SUBDI M i s

8

9

10 TYPE DOUBLE TABLE | S ARRAY(I NTEGER RANGE <>, | NTEGER RANGE <>) OF | NTEGER;
11 TYPE CHO CE_INDEX IS (H, 1);

12 TYPE CHO CE_CNTR | S ARRAY(CHO CE_I NDEX) OF | NTEGER;
13

14 CNTR : CHO CE_CNTR : = (CHO CE_I NDEX => 0);

15

16 FUNCTI ON CALC (A : CHO CE_INDEX; B : | NTEGER)

17 RETURN | NTEGER | S

18 BEG N

19 CNTR(A) := CNTR(A) + 1;

20 RETURN B;

21 END CALC,

22

23 PROCEDURE MAIN | S

24 Al : DOUBLE TABLE(1 .. 3, 2 .. 5);

25 BEG N

26 CNTR : = (CHO CE_I NDEX => 1);

27 if (EQUAL(CNTR(H), CNTR(1))) then

28 Al = (-- COR ERROR Sub-agreggates do not
have the sane di nmension

29 1 => (CALC(H,2) .. CALC(I,5) => -4),
30 2 => (CALC(H,3) .. CALC(I,6) => -5),
31 3 => (CALC(H,2) .. CALC(1,5) => -3));
32 END | F;

33 END MAI N,

34

35 end SUBDI M

Explanation:

At line 28, PolySpace shows an error. One of the sub-aggregates declarations of Al is not compatible with its definition. The
second sub-aggregates does not respect the dimension defined at line 24.

Sub-aggregates must be singular.

Release 2007a+ 134/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
4.4.18. Characters check: COR

Checks the construction using the character type.

ADA example:

1

2 package CHAR is

3 procedure Mai n;

4 functi on Random ret urn Bool ean;

5 end CHAR;

6

7

8 package body CHAR is

9

10 type ALL_Char is array (lInteger) of Character;

11 TYPE Sub_Character is new Character range 'A .. 'E';

12 TYPE TabC is array (1 .. 5) of Sub_Character;

13

14 FUNCTION INT return character is

15 VAR : TabC := "abcdf"; -- COR Error: Character is not in range 'A

16 begi n

17 return 'A';

18 end;

19

20 procedure MAIN is

21 Var : ALL_ Char;

22 BEG N

23 | F RANDOM THEN

24 Var(1l) :=Init; -- NTC ERROR: propagation of the COR error

25 ELSE

26 Var(lnteger) :=""; -- COR ERROR the "null' string literal is not allowed here

27 END | F;

28 END MAI N;

29 END CHAR;

Explanation:

At line 15, PolySpace prompts that the assigned array is not within the range of the Sub_Character type. Moreover, any of the character

values of VAR does not match any valuein therange'A' ..'E".
At line 26, a particular detection is made by Verifier when the null string literal is assigned incorrectly.

Release 2007a+
Revision 4.2 vA

135/292

PonSpace

TECHHOLOGIES

Previous

Back to table of contents

4.4.19. Accessibility level on access type: COR

Checks the accessibility level on an access type. This check is defined in Ada Standard at chapter 3.10.2-29al. It detects

errors when an access pointer refers to a bad reference.
Ada Example:

1

2 package CORACCESS i s

3 procedure main

4 function Brand return Bool ean;

5 end CORACCESS;

6

7 package body CORACCESS is

8 procedure main is

9

10 type T is new Integer

11 type Ais access all T;

12 Ref : A

13

14 procedure Procl(Ptr access T) is

15 begi n

16 Ref := A(Ptr); -- COR Verified: Accessibility |evel deeper than
that of access type

17 end;

18

19 procedure Proc2(Ptr access T) is

20 begi n

21 Ref = A(Ptr); -- COR ERROR: Accessibility I evel not deeper than
that of access type

22 end;

23

24 procedure Proc3(Ptr access T) is

25 begi n

26 Ref := A(); -- COR Warning: Accessibility Ievel m ght be deeper
than that of access type

27 end;

28

29 X: aliased T :=1

30 begi n

31 decl are

32 Y : aliased T := 2;

33 begi n

34 Procl(X Access);

35 i f BRand t hen

36 Proc2(Y' Access); -- NIC ERROR. propagation of error at line 22
37 el sif BRand then

38 Proc3(Y Access); -- NIC ERROR propagation of error at line 27
39 end if;

Release 2007a+
Revision 4.2 vA

136/292

40 end;

41 Proc3(X Access);
42 end mai n;

43 end CORACCESS;

44

Explanation:

In the example above at line 17: Ref is set to X'access and Ref is defined in same block or in a deeper one. Thisis authorised.
On the other hand, y is not defined in ablock deeper or inside the one in which Ref is defined. So, at the end of block, y does
not exist any more and Ref is supposed to pointsto ony. It it prohibited and PolySpace checks at line 22 and 27.

Note: the warning at line 27 is due to the combination of ared check because of y'access at line 39 and a one for
x'access at line 42.

Release 2007a+ 137/292
Revision 4.2 vA

Previous

PonSp

ace

TECHNOLOGIES

Back to table of contents Next

4.4.20. Valid variable: COR

Checks the validity of avariable. This check is defined in Ada Standard at chapter 13.9.1 and 13.9.2. It verifies
the validity of variablesin two following cases:

1. On results of unchecked conversion on scalar type with representation clause.

2. In acase argument.

Ada Example:

end CORVAR

©CoO~NOOUITEA WN B

10 for Euse (A=>1, B=>3, C=>4);
11

12 -- subtype Fis E (A O

13

14 function |

15 function randomreturn F is separate;
16 vi F;

17 ve : E;

18

19 procedure main is

20 begi n

21 vf = random

22 ve :=1_E (3); -- COR Warning:
23

24 case is -- COR War ni ng:
25 when 1 => null

26 when 2 => null;

27 when 3 => nul |

28 when 4 => nul |

29 when others => nul | ;

30 end case;

31 end nai n;

Release 2007a+
Revision 4.2 vA

package CORVAR i s
procedure nain;

wi t h Ada. Unchecked_ Conver si on;

package body CORVAR is
type F is range 1..10;
type Eis (A B, O;

_E is new Ada. Unchecked Conversi on (I nteger, E)

vari able m ght be not valid

vari able m ght be not valid

138/292

32 end CORVAR
33
34
35

Explanation:

At lines 22 and 24, PolySpace checks the validity of variables. The check is aways orange as PolySpace is not
precise for theses particular constructions.

Release 2007a+ 139/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
4.4.21. Explicit dereference of a null pointer: COR

When a pointer is dereferenced, PolySpace checksif it isnot anull pointer.

Ada Example:

1 package CORNULL is

2 procedure mai n;

3 end CORNULL;

4

5 package body CORNULL is

6 type ptr_type is access all integer;

7 ptr : ptr_type;

8 A : aliased integer := 10;

9

10 procedure main is

11 begi n

12 ptr := A access;

13 if (ptr /= null) then

14 ptr. c= ptr. 1; -- COR Warning: Explicit dereference of

possi bly null val ue

15 assert (ptr. = 10); -- COR Warning: Explicit dereference of

possi bly null val ue

16 nul | ;

17 end if;

18 end main;

19 end CORNULL;

20

Explanation:

At line 14 and line 15, PolySpace checks the null value of ptr pointer. As PolySpace does not have a pointer analysis, it is not

able to be precise on such construction.
These checks are currently always orange.

Release 2007a+
Revision 4.2 vA

140/292

y E: HNOLOGIES
Previous Back to table of contents Next

4.4.22. Accessibility of a tagged type: COR

Checksif atag belongs to atagged type hierarchy. This check is defined in Ada Standard at chapter 4.6
(paragraph 42).

It detects errors when a Tag of an operand does not refer to class-wide inheritance hierarchy.

Ada Example:

1 package TAG i s

2

3 type Tag Type is tagged record

4 Cl : Natural;

5 end record,

6

7 type DTag Type is new Tag Type with record

8 C2 . Float;

9 end record;

10

11 type DDTag_Type is new DTag _Type with record

12 C3 : Bool ean;

13 end record;

14

15 procedure Main;

16

17 end TAG

18

19

20 package body TAG is

21

22 procedure Main is

23 Y : DrTag_Type := DTag_Type' (C1L => 1, C => 1.1);
24 Z : Drag _Type := DTag _Type' (C1L => 2, C => 2.2);
25

26 W: Tag_Type' Cass := Z;, -- Wcan represent any object
27 -- in the hierarchy rooted at Tag_Type
28 begi n

29 Y ;= (W; -- COR Warning: Tag might be correct
30 nul | ;

31 end Mai n;

32

33 end TAG

Explanation:

Release 2007a+ 141/292
Revision 4.2 vA

In the previous example W represents any object in the hierarchy rooted at Tag_Type.
At line 29, a check is made that the tag of Wis either atag of DTag_Type or DDTag_Type. In this example, the

check should be green, W belongs to the hierarchy.
PolySpace is not precise on tagged types and currently always flagsit asa COR warning.

142/292

Release 2007a+
Revision 4.2 vA

PonSpace

TECHMNOLOGIES

Previous Back to table of contents Next

4.4.23. Power Arithmetic: POW

Check to establish whether the standard power integer or float function is used with an acceptable (positive) argument.

Ada Example:

1 Wth Ada. Nunerics; Use Ada. Nuneri cs;

2 Wth Ada. Nunerics. Aux; Use Ada. Nuneri cs. Aux;

3

4 package POWF is

5 functi on Bool Random return Bool ean;

6 procedure MAIN;

7 end POWF,

8

9 package body POW is

10

11 procedure MAIN is

12 | Res, ILeft, IR ght : Integer;

13 Res, Dbl _Random : Doubl e ;

14 pragma Vol ati | e(Dbl _Random ;

15 begi n

16 -- Inplenmentation of Power arithnmetic function with **

17 i f (Bool Random then

18 | Left := 0;

19 IR ght = -1,

20 |Res: = | Left ** | Right; -- POWERROR: Power must be positive
21 end if;

22 i f (Bool _Random then

23 | Left = -2;

24 | Right := -1,

25 |Res: = | Left ** | Right; -- POWERROR: Power mnust be positive
26 end if;

27

28 | Left := 2e8;

29 | R ght := 2;

30 IRes: = | Left ** | Right; -- otherw se OVFL Warning
31

32 -- Inplenmentation wth double

33 Res : = ()); -- PONWArning : may be not positive
34 end MAIN;

35 end POAF;

Explanation:

An error occurs on the power function on integer values "**" with respect to the values of the left and right parameters when
left <= 0 and right < 0. Otherwise, PolySpace prompts the user to investigate further by means of an orange check.
Note: As preconised by the Standard, PolySpace set a check on the instruction left* *right with left: =right:=0.

Release 2007a+ 143/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.4.24. User Assertion: ASRT

Check to establish whether a user assertion is valid. If the assumptions implied by an assertion are invalid, then the standard
behaviour of the pragma assert is to abort the program. Verifier therefore considers a failed assertion to be a runtime error.

ADA Example:

1

2 package ASRT is

3 function Bool Random return Bool ean;

4 procedure MNAIN;

5 end ASRT;

6

7 package body ASRT is

8

9 subtype Intpos is Integer range O..Integer'Last;

10 subtype Tenlnt is Integer range 1..10;

11

12 Val Constant : constant Bool ean : = True;

13 procedure MAIN is

14 -- Init variables

15 Flip_Flop, Flip_O_val : Bool ean;

16 Ten_Random Ten_Positive : Tenlnt;

17 pragma Vol atil e_ada. ht m (ten_randon;

18 begin

19

20 i f (Bool _Randon) then

21 -- Flip_Flop is randonmy be True or Fal se

22 Flip_Flop := bool _random

23

24 -- Flip_O_Val is always True

25 Flip_O_Val := Flip_Flop or Val_Constant;

26 pragma assert(flip flop=True or flip flop=False); -- User assertion is verified
27 pragma assert (Flip O Val =Fal se); -- ASRT ERROR User assertion fails
28 end if;

29 i f (Bool Randon) then

30 ten_positive : = 1

31 assert(ten_positive > 5); -- ASRT Warning: User assertion may fail
32 pragna assert(ten positive > 5); -- User assertion is verified

33 pragma assert(ten Positive <= 5); -- ASRT ERROR Failure User Assert
34 end if;

35

36 end MAIN;

37

38 end ASRT; -- End Package

Explanation:

In the ASRT.ASRT function, pragma assert is used in two different manners:

1. To establish whether the values flip_flop and var_flip in the program are inside the domain which that the program is

designed to handle. If the values were outside the range implied by the assert, then the program wouldn't be able to run
properly. Thus they are flagged as run-time errors.

2. To redefine the range of variables as shown at line 32 where ASRT.Ten_positive is restrained to only a few values.

Indeed, PolySpace makes the assumption that if the program is executed with no run time error at line 32, Ten_positive

Release 2007a+ 144/292
Revision 4.2 vA

can only have a value greater than 5 after the line.

Release 2007a+ 145/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

4.4.25. Non Terminations: Calls and Loops

NTC and NTL are only informative red checks.

* They are the only red errors which can be filtered out using the filters shown below

e They don’t stop the analysis

* As other reds, code placed after them are grey (unreachable): the only colour they can take is red. They are not
“orange” NTL or NTC

* They can reveal a bug, or can simply just be informative

INTL A NTL is a loop for which the break condition is never met. Among NTLs, you will find the following
examples:

while(1=1) loop function_call; end loop; // informative NTL

while(x >=0) loop x := x+1; end loop; // with x as an unsigned int could reveal a bug, or not (an unsigned is
always positive)

for Iin 0 .. 10 loop my array(i) = 10; end loop; // with "my _array is integer in 0..9" this red NTL reveals a
bug in the array access, flagged in orange

INTC Y our function called "test" calls f;. And “f;” is flagged as a red NTC. Why? There could be five distinct
explanations for this NTC:

1. “f’ contains a red error;
2. “f’contains an NTL ;
3. “f’contains an NTC;

4. “f’ contains an orange which is context dependant : it is either red or green: for this call, it
makes the function crash.

Note on NTC: some information can be given when clicking on the NTC

The list of so-called "non sati sfi abl e constrai nt s" represents the list of variables that cause the red error inside the

function. The (potentially) long list of variables is useful to understand the cause of the red NTC, as it gives the conditions
causing the NTC: it can be a list of variables (global or not):

* with a given value;

* which are not initialized. Perhaps the variables are initialized outside the set of analyzed files.
Solution
Carefully check the reasons with relation to your situation.

Note If you can identify a function that does not terminate (loop, exit procedure) you may wish to
use the -known-NTC function. You will find all the NTCs and their consequences in the known-NTC
Viewer, allowing you to filter them. Benefit : you can focus on NTCs you did not expect.

Related subjects:

Release 2007a+ 146/292
Revision 4.2 vA

4.4.25.1. Non Termination of Call: NTC

4.4.25.2. Non Termination of Call dueto entry in tasks
4.4.25.3. Known Non Termination of Call: K-NTC
4.4.25.4. Non Termination of Loop: NTL

4.4.25.5. Sgrt, sin, cos, and generic elementary functions

Release 2007a+ 147/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES

Previous Back to table of contents

4.4.25.1. Non Termination of Call;: NTC

Check to establish whether a procedure call returns. It is not the case when the procedure contains an endless loop or a certain

error, or if the procedure calls another procedure which does not terminate. In the latter instance, the status of this check is

propagated to the caller.

Ada example:

1 package NTC is

2 procedure MAIN;

3 -- Stubbed function

4 functi on Random Bool ean return Bool ean;

5 end NTC

6

7 package body NTC is

8

9 procedure FOO (X : Integer) is

10 Y : Integer;

11 begi n

12 Y: =1 X; -- ZDV Warning: Scal ar division by zero may occur
13 while (X >= 0) loop -- NTL ERROR Loop never term nate

14 if (Y/=X) then

15 Y =1/ (Y-X;

16 end if;

17 end | oop;

18 end FOO

19

20 procedure MAIN is

21 begi n

22 i f (Random Bool ean) then

23 FOO(0) ; -- NTC ERROR because of zero Division in NTC FOO (ZDV)
24 end if ;

25 i f (Random Bool ean) then

26 FOO(2); -- NTC ERRCOR: Non Ternination Loop in NTC FOO (NTL)
27 end if;

28 end MAIN,

29 end NTC

Explanation:
In this example, the function NTC.FOO is called twice and neither of these 2 calls ever terminates:

1. Thefirst never returns because of adivision by zero (ZDV warning) at line 12 when X = 0.

2. The second never terminates because of an infinite loop (red NTL) at line 13.
As an aside, note that pragma Volatile_ada.htm is used to randomly initialize a variable.

Note: aNTC check can only be red.

Release 2007a+
Revision 4.2 vA

148/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.4.25.2. Non Termination of Call due to entry in tasks

Tasks or entry points are called by PolySpace at the end of the main subprogram (which is executed
sequentially) at the same time (the main subprogram must terminate).

In Ada language, explicit task constructs which are automatically detected by PolySpace are also
called at the end of the main subprogram. An Ada program whose main subprogram calls a task entry,
for instance, violates this model. PolySpace signals violations of this hypothesis, by indicating an NTC
on an entry call (or “rendez-vous”) performed in the main.

In the PolySpace model, the main procedure is executed first before any other task is started.

Example

1 package NTC entry is

2

3 TASK TYPE MyTask | S

4 ENTRY START,;

5 ENTRY V842;

6 END MyTask;

7 procedure Min;

8 A . Integer;

9 end NTC entry;

10

11 package body NTC entry is

12

13 task body MyTask is

14 begi n

15 accept Start;

16 A=A+ 1; -- Grey code
17 accept V842,

18 A:=A- 1; -- Grey code
19 accept V842,

20 A=A+ 1; -- Grey code
21 accept V842,

22 A:=A- 1; -- Grey code
23 end MyTask;

24

25 procedure Main is

Release 2007a+ 149/292
Revision 4.2 vA

26 T1 : MTask;

27 begi n

28 A = 0;

29 T1. Start; -- NTC ERROR: entry
task in the main

30 T1.V842;

31 T1.V842;

32 T1.V842;

33 pragna Assert (A=0); -- Grey code

34 end Mi n;

35 end NTC entry;

Using the launching command pol yspace- ada95 —mai n NTC _entry. mai n on the previous
example leads to a red NTC in the main procedure and grey code on the main task body My Task.

The only way to analyse this code with PolySpace, is to add another main procedure with a null body
and considers the NTC_entry.main as a task.

Package nymain is Procedure null _main; End nynain;

The previous small piece of code added and the usage of the launching command pol yspace-
ada95 —main nymain. null _mai n. —entry-poi nts NTC_entry. mai n allow removing the red

NTC in NTC entry. mai n and grey code in the body of MyTask.

Another example concerns the call of an accept “rendez-vous” in the task body from the main (using —
mai n mai n. mai n):
- - package body main is

procedure main is

begi n

depend. control eur.demarrer; -- red NTC because of the call to a task is
called by the main

end mai n;
--end nmai n;

with Text |o;
package body depend is

task body control eur is
date : Integer := O;
init_date: Integer;

begi n

| oop

sel ect

accept demarrer;

if (date = 0) then
init_date := 10;

end i f ;
date := init_date ;
Text _lo.Put _Line ("bonjour");

Release 2007a+ 150/292
Revision 4.2 vA

exit;

end sel ect;
end | oop;
end;

end depend,;

Release 2007a+ 151/292
Revision 4.2 vA

Previous

By using the -known-NT C option with a specified function at launch time, is possible to transforman NTC

PonSpace

TECHHNOLOGIES
Back to table of contents

4.4.25.3. Known Non Termination of Call: k-NTC

Check for anon termination of call to ak-NTC check. Like an NTC check, k-NTC checks are propagated to their

cdlers.

Function which are designed to be non terminating can be filtered out during the analysis of results through the
use of the appropriate filter in the viewer, in conjunction with the -known-NT C option at launch.

Ada example:

1 package KNTC is

2 procedure Put _io (X : Integer);

3 procedure get _data(Data : out Float;
4 procedure store data(Data : in Float);
5 procedure SysHalt(Value : Integer);
6 procedure MAIN

7 end KNTC;

8

9 package body KNTC is

10

11 -- known NTC function

12 procedure SysHalt(Value : Integer) is
13 begi n

14 Put i o(Val ue);

15 | oop -- Never termnate |oop

16 nul | ;

17 end | oop;

18 end SysHalt;

19

20 procedure MAIN is

21 Status : Integer := 1;

22 Data : Fl oat;

23 begi n

24

25 while(Status = 1) | oop

26 -- get data

27 get _data(Data, Status);

28 if (status = 1) then

29 store_dat a(dat a);

30 end if;

31 If (Status = 0) then

32 SysHal t (1); -- k-NTC check:
33 end if;

Release 2007a+
Revision 4.2 vA

Status :

Cal |

never term nate

out | nteger);

152/292

34 end | oop;
35 end MAIN;
36 end KNTC,

Explanation:

In the above example, the -known-NTC " KNTC.SysHalt" option has been added at launch time, transforming
corresponding NTC checksto k-NTC one.

Release 2007a+

153/292
Revision 4.2 vA

y E:Hnommzs
Previous Back to table of contents Next

4.4.25.4. Non Termination of Loop: NTL

Check to establish whether aloop (for,do-while, while) terminates.

Ada example:

1

2 package NTL is

3 procedure MAIN;

4 -- Prototypes stubbed as pure functions
5 procedure Send Data (Data : in Float);
6 procedure Update Al pha (A : in Float);
7 end NTL;

8

9 package body NTL is

10

11 procedure MAIN is

12 Acq, Vacq : Float;

13 pragma Vol atil e_ada. ht m (Vacq);

14 -- Init variables

15 Al pha : Float := 0.85;

16 Filtered : Float := 0.0;

17 begi n

18 | oop -- NTL information: Loop never term nates
19 -- Acquisition

20 Acq : = ;

21 -- Treat nment

22 Filtered : = Alpha * Acq (1.0 - Alpha) * Filtered;
23 -- Action

24 Send_Dat a(Filtered);

25 Updat e_Al pha(Al pha);

26 end | oop;

27 end MAIN;

28 end NTL;

29

Explanation:

In the above example, the "continuation condition" of the while is always true and the loop will never exit. Thus PolySpace will raise an
error.
In some case, the condition is not trivial and may depend on some program variables. Nevertheless Verifier is still able to treat those cases.

Another NTL example: error propagation

Like all other red errors, Verifier does not continue furthermore the analysisin the current branch even the -continue-with-red-error
option. Due to the inside error, the (for, do-while, while) loop never terminates.

package NTLDO i s
procedure MNAIN;
end NTLDG

package body NTLDO i s
procedure MAIN is
A : array(1..20) of Float;
J : Integer;
begi n
0 for I in AFirst .. 21 loop -- NIL ERROR propagati on of OVFL ERRCR

P OO ~NOOOA,WNPE

Release 2007a+ 154/292
Revision 4.2 vA

11 A(l) :=0.0 ; -- OVFL Warning: 20 verification with I in [1,20] and
one ERROR with | = 21

12 J =1 + 1;
13 end | oop;
14 end MAI N;

15 end NTLDG,

Note: aNTL check can only be red.

Release 2007a+ 155/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.4.25.5. Sqrt, sin, cos, and generic elementary functions

When the analysed code uses some mathematical functions which are not supported by PolySpace,
and there are always unproven checks about overflows when two variables - which have been derived
from the results of mathematical functions such as “cos” are summed. The —voa option displays the full
range for the potential return value of these functions.

This symptom can be seen when all mathematical functions are stubbed automatically which happens
when the declarations of these functions for the compiler in use are slightly different from those
assumed by PoySpace. The following solution matches the user’'s mathematical functions to
PolySpace Verifier's equivalent function. Please note it has no impact on the original source code (no
modification will be made).

Original code

package Types is
subtype My_Float is Float range -100.0 .. 100. O;

end Types;

3 package Main is

4 procedure Mi n;

5 end Mai n;

6

7

8 with New Math; use New Mat h;

9 with Types; use Types;

10

11 package body Main is

12 procedure Main is

13 X : My_float;

14 begi n

15 X = Cos(12.3); --voa displays [-1.0 .. 1.0]
16 X :=8in(12.3); --voa displays [-1.0 .. 1.0]
17 X::=8qrt(-1.5); --is red: NTC Error

18 end;

19 end Mi n;

Original maths package

with My_Specific_Mth_Lib;
wi th Types; use Types;

package New Math is
function COS (X : My _Float) return My_Float renames My _specific_math_lib.

Release 2007a+ 156/292
Revision 4.2 vA

Cos;

function SQRT (X : My_Float) return My_Float renanes My_specific_math_|ib.
sqrt;

function SIN (X : My _Float) return My_Float renames My_specific_math_lib.
sin;
end New Mat h;

Extra package

This package may be written by the user to include more precise modelling of the mathematical functionsin the
analysis.

W TH Ada. Nuneri cs. Generi c_El ementary_Functi ons;

wi th Types; use Types;

package My_specific_math_lib is new Ada. Nunerics.
Generic_El ementary_ Functions(M/_Fl oat);

Important

Due to a lack of precision in some areas, PolySpace is not always able to indicate a red NTC check on
mathematical functions even whereas a problem exists. By default it is important to consider each call
to any mathematical functions as though it had been highlighted by an check, and could
therefore lead to a runtime error.

Release 2007a+ 157/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

4.4.26. Unreachable code: UNR

Check to establish whether different code snippets (assignments, returns, conditional branches and function calls) are reached
(Unreachable code is referred to as "dead code"). Dead code is represented by means of a colour on every check and an

UNR check entry.

ADA Example:

1 package UNR i s

2 type T_STATE is (Init, Wait, Internediate, EndState);

3 function STATE (State : in T_STATE) return Bool ean;

4 function Internediate State(l : in Integer) return T_STATE;
5 function UNR_I return |Integer;

6 procedure MAIN,

7 end UNR

8

9 package body UNR is

10

11 function STATE (State : IN T_STATE) return Boolean is

12 begi n

13 if State = Init then

14 return Fal se;

15 end if ;

16 return True;

17 end STATE;

18

19 function UNR_|I return Integer is

20 Res_End, Bool _Random : Bool ean;

21 I : Integer;

22 Res State : T _STATE;

23 pragma Vol atil e_ada. ht m (bool _randon);

24 begi n

25 Res_End : = STATE(Init);

26 if (Res End = Fal se) then

27 Res End : = State(EndState);

28 Res State := Internediate_State(0);

29 if (Res End = True or else Res State = Wait) then -- UNR code
30 Res _State : = EndState;

31 end if;

32 -- Use of | which is not initialized

33 if () then

34 Res_State := Internediate_State(l); -- NV ERROR
35 if (Res_State = Internediate) then -- UNR code because of NV error
36 Res State : = EndStat e;

37 end if;

38 end if;

39 el se

40 -- UNR code

41 I = 1;

42 Res State := Internediate_State(l);

Release 2007a+ 1581292

Revision 4.2 vA

43 end if;

44 return |I; -- NIV ERROR. because of UNR code
45 end UNR |

46

47 procedure MAIN is

48 | : Integer;

49 begi n

50 I := UNR_I; -- NTC ERROR because of propagation
51 end MAIN;

52

53 end UNR

54

55

56

Explanation:
The example illustrates three possible reasons why code might be unreachable, and hence be coloured

1. Asshown at line 26, the first branch is always true (if-then part) and so the other branch is never executed (else part at
lines 40 to 42).

2. At line 29 a conditionnal part of aconditionnal branch is always true and the other part never evaluated because of the
standard definition of logical operator or else.

3. The piece of code after ared error is never evaluated by Polyspace Verifier. The call to the function and the lines
following line 34 are considered to be dead code. Correcting the red error and re-launching would allow the colour to be
revised.

Release 2007a+ 159/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.4.27. Value on Assignment: VOA

Check to establish the value taken by a variable on assignment. Such checks are only available when the -voa option is used at launch
time.
At present, voa checks are only available on scalar variables. Some examples are given below.

ADA example:

1

2

3 Package VQA is

4

5 subtype T_NBWAY is |Integer range 1..8;

6 subtype T_DIG TAL is Integer range 0..1;

7 subtype T_ANALOGJ C is Float range -10.0 .. 10.0;

8 Zero_anal ogic : constant T_ANALCA C

9 = (T_ANALOG C Last - T_ANALOG C First)/ 2.0 - T_ANALOG C Last; --
10

11 function Get_Analogic (Way : T_NBWAY) return T_Anal ogi c;
12 function Get_Digit (Way : T_NBWAY) return T_Digital;

13

14 type VerifierColor is (Red, Geen, Oange, Black);

15 type RECOR i s

16 record

17 A : Float;

18 B : VerifierColor;

19 end record,;

20 Var _rec : RECOR;

21

22 Procedure MAIN;

23

24 end VOA;

25

26 package body VQA is

27

28 Procedure MAIN is

29 Vay_io : T_NBWAY := T_NBWAY' Fi rst;

30 Val _Sensor : T_ANALCG C,

31 Val _Digit : T_DI G TAL;

32 volatile Color : VerifierColor;

33 pragma Vol atil e_ada. ht m(Vol atil e_col or);

34 Vol atil e _ada. ht m Float : Fl oat;

35 pragma Vol atil e_ada. ht m(Vol atil e_Fl oat);

36 begin

37

38 for | in T_NBWAY' Range | oop

39 Val _Sensor := Get_Analogic(l); -- VOA: {-1E+l<=[expr]<=1E+1}
40 Val Digit := Get _Digit(l); -- VOA {0<s[expr]<=1}
41 if Val Sensor < 0.0 then

42 Val _Sensor := Zero_Analogic; -- VOA: {[expr]=0.0}
43 end if;

44 end | oop;

45

46 -- Exanpl e

Release 2007a+ 160292

Revision 4.2 vA

47 Var _Rec. A : 7 -- VOA: {[expr]=float(32) range -3.41E
+38. . 3. 4E+38}

48 Var _Rec.B : = 7 -- VOA: {red<=[expr]<=bl ack}

49

50 -- Other possible but intrusive way to know a specific val ue

51 pragma | nspection_Point (Way_io); -- inspection point conputed range: {WAY_ | CO=1}
52

53 end MAIN;

54

55 End VOA;

Explanation:
As shown in the example, inspection points (|PT) can also be used to discover the range of avariable.

Release 2007a+ 161/292
Revision 4.2 vA

PonSpace

TECHMOLOGIES
Previous Back to table of contents Next

4.4.28. Inspection Points: IPT

The use of pragma Inspection_Point (var) as a code snippet (where (var) isascalar variable) represents areguest to compute the
specific range of avariable by means of a pragma instruction. Refer to the example below.

Ada example:

1

2

3 Package IPT is

4

5 subtype T_NBWAY is Integer range 1..8;

6 subtype T_DIG TAL is Integer range O..1;

7 subtype T_ANALOG C is Float range -10.0 .. 10.0;

8 Zero_anal ogic : constant T_ANALCG C

9 = (T_ANALOA C Last - T_ANALOG C First)/ 2.0 - T_ANALCOG C Last; --
10

11 function Get_Analogic (Way : T_NBWAY) return T_Anal ogi c;
12 function Get_Digit (Way : T_NBWAY) return T_Digital;

13

14 type VerifierColor is (Red, Green, Orange, Bl ack);

15 type RECOR i s

16 record

17 A : Float;

18 B : VerifierColor;

19 end record;

20 Var rec : RECOR;

21

22 Procedure MAIN;

23

24 end | PT;

25

26 package body IPT is

27

28 Procedure MAIN is

29 Way _io : T_NBWAY := T_NBWAY' Fi rst;

30 Val _Sensor : T_ANALCA C;

31 Val _Digit : T_D G TAL;

32 vol atile Color : VerifierColor;

33 pragnma Vol atil e _ada. ht m{ Vol atile_color);

34 Vol atil e_ada. ht m Float : Float;

35 pragnma Vol atil e_ada. ht m{(Vol atil e_Fl oat);

36 begin

37

38 for I in T_NBWAY' Range | oop

39 Val _Sensor := Get_Analogic(l);

40 pragnma | nspection_Point (Val Sensor); -- IPT: {-1E+1<=VAL_SENSOR<=1E+1}
41 Val _Digit := Get_Digit(l);

42 pragme | nspection_Point (Val _Digit); -- I PT: {0<=VAL_DI d T<=1}
43 end | oop;

44

45 -- Exanple on record

46 Var Rec. A : = ;

Release 2007a+ 162/292

Revision 4.2 vA

47 Var _Rec.B : =

48 pragma | nspection_Point (Var_Rec); -- IPT currently ignored

49 pragme | nspection_Point (); -- IPT: {VOLATI LE_COLOR=red. .
bl ack}

50 pragme | nspection_Point (Way_io0); -- I PT: {WAY_I O=1}

51

52 end MAIN

53

54 End | PT;

Explanation:
Note that the inspection point at line 48 isignored. Inspection points are available for scalar variables only.

Release 2007a+ 163/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.5. Advanced results review

Related subjects:
4.5.1. Purpose of -continue-with-red-error option

4.5.2. Checks on procedure callswith default parameters
45.3. INIT PROC procedures

Release 2007a+ 164/292
Revision 4.2 vA

Previous

Problem

PonSpace

TECHNOLOGIES

Back to table of contents Next

4.5.1. Purpose of -continue-with-red-error option

| have ared error that appears to be dead code. Is this normal?

Explanation

Example

Release 2007a+
Revision 4.2 vA

» Checksin uncalled code might be displayed in red. PolySpace performs an upper
approximation of variables so it may be true that Verifier believesit (is) possible to enter in a
particular condition when it could not happen during “real life” execution. In the example below,
there is an attempt to compare elements in the array, and PolySpace was not able to conclude that the
branch was unreachable. PolySpace may conclude that an error is present in aline of code, even when
that code cannot be reached;
 Every colour in thegraph on theright can be approximated by a colour immediately above
it in thegraph. Thisis called imprecision. It is clear when green can be approximated by orange, also
clear when red is approximated by orange, but looks strange when grey isinvolved. Every set of points
can be approximated by a superset that is bigger than what might happen in reality. An empty set of
points can be approximated:
by an empty superset;
by a nonempty super
set. Inthiscase, the
superset can have any
E‘ position regarding the
AP forbidden zone,
) therefore have any
b colour. That isthe
reason why PolySpaceis
Hed @ @' not exhaustive on dead
code.

* Isitaproblem to havegrey code approximated by red? In case of ared error, all executions
that follow this branch of execution are stopped (that is the definition of PolySpace behaviour) because
no valid execution can pass this point. This means that after the "if then" statement, no execution can
continue with that condition met. This models the reality of the situation exactly.

165/292

if (condition) then action_producing_a red

After the "if" statement, the only possibility to continue the execution aliveisif the condition is false, otherwise,
we would have ared error. (So) after this branch, it means that the condition is always false. That is the reason for
the -continue-with-red-error option. Y ou can continue analyzing your code, even with a certain error.

Remember that this propagates values throughout your application. None of the execution paths leading to the
run-tim errror will continue after the error.

Solution

7 package body Main is

8 procedure Main is

9 X: array (1..5) of Integer;
10 Tnp: | nteger;

11 Zero: Integer:= 0,
12 begi n

13 X=(1,2,3,4,5);
14 if (X(4) > X(5))
15 t hen

16 Tmp: = 1 / Zero;
17 end if;

18 end;

19

20 end,

The-conti nue-w t h-red-error optionisapplicablein this case.

Release 2007a+ 166/292
Revision 4.2 vA

Previous

PonSpace

TECHHMOLOGIES
Back to table of contents Next

4.5.2. Checks on procedure calls with default parameters

Some checks may be located on procedure calls. They correspond to default values assigned to parameters of a procedure.

Example:

1 package DCHECK is

2 type Pixel is

3 record

4 X : Integer;

5 Y . Integer;

6 end record,

7 procedure MAIN;

8

9 NError : |nteger;

10 procedure Failure (val : Integer := Nerror);

11 procedure MessageFailure (str : String :="");

12 end DCHECK;

13

14 package body DCHECK is

15 type TwentyFloat is array (lnteger range 1.. 20) of Float;

16

17 procedure AddPi xel Val ue(Vpi xel : Pixel) is

18 begi n

19 if (Vpixel.X < 3) then

20 ; -- NIV Verified: Variable is initialized
(Nerror)

21 ; -- COR Verified: Value is in range (string)
22 end if;

23 end AddPi xel Val ue;

24

25 procedure MAIN is

26 B : Twentyfl oat;

27 Vpi xel : Pixel;

28 begi n

29 NError := 12;

30 Vpi xel . X = 1;

31 AddPi xel Val ue(Vpi xel) ;

32 NError := -1;

33 for | in 2 .. Twentyfloat'Last | oop

34 if ((I mod 2) = 0) then

35 B(l) := 0.0;

36 if (I nod 2) /=0 then

37 Fai | ure; -- NIV Unreachabl e: Variable is not
initialized

38 MessageFal | ure; -- COR Unreachable: Value is not in range
Release 2007a+ 167292

Revision 4.2 vA

39 end if;

40 end if;

41 end | oop;

42 MessageFai |l ure("end of Main");
43 end MAIN;

44 end DCHECK;

In the previous example, at line 20 and 37, checks on the procedure calls Fai | ur e represent the check NIV made on the
default parameter Ner r or (a global parameter).

In the same way, COR checks at line 21 and 38 on MessageFai | ur e represent verification made by PolySpace on the
default assignment of a null string value on the input parameter.

Note: not all the checks have been moved to procedure calls. Checks remain on the procedure definition except for the
following basic types and values:
« A numerical value (example: 1, 1. 4)

« Astring (example: “end of main”)
« A character (example: * A")
« Avariable (example: Nerr or).

Release 2007a+ 168/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

4.5.3. INIT_PROC procedures

In the PolySpace viewer, it could be possible to find nodes | NI T_PROCS in the “Procedural entities”
view. As your compiler, PolySpace generate function _|I NI T_PROC for each record where initialization
occurs. When a package define many records, each _| NI T_PRCC s differentiated by $1 (I in 1..n).

Example:

1 package test is

2 procedure main;

3 end test;

4

5 package body test is

6

7 subtype range_0_3 is integer range O0..3;
8 Vg : Integer := 1,

9 Pragma Vol atile(Vg);

10

11 function randomreturn integer;

12 type ny_recl is

13 record

14 a : integer := 2 random -- Unproven OVFL conming from
_INIT_PRCC procedure (initialization of V1)
15 b: float := 0. 2;

16 end record;

17 V1l : nmy_recl;

18 V2 : ny_recl := (10, 10.10);

19

20 procedure main is

21 Functi on Random ret urn Bool ean;
22 begi n

23 nul | ;

24 end;

25 end test;

In the previous example, an unproven OVFEL on the field a of record ny_r ec1 has been detected when
initialising the global variable V1. It initialises record of global variable V1 at line 17. Indeed, r andom
procedure could return any value in the integer type and so, leads to an overflow by adding to 2. Check
is located in the _INIT_PROC node into “Procedural entities” view.

Release 2007a+ 169/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

5. Get more from PolySpace: Insert it into your development
process

This section will be of interest to Project managers, quality managers and developers who are looking to
understand PolySpace results, and are looking to optimise the timing of its use during the project development
cycle. The document suggests how PolySpace might best be applied at each phase of a typical project lifecycle.
The twin goals of productivity and quality are considered, and it is acknowledged that the criticality of the
application will affect the balance between them.

However, the following assumes that the primary goal is to achieve maximum productivity with no quality
defects. The document explains how to use PolySpace tools at each phase of the development cycle to aim for
such a goal, with the financial implications of implementing each recommendation is left for assessment by the
user.

How can I use PolySpace in my How can I dhange the process to
current process? get more out of PolySpace?

How can I improve the use of
PolySpace Verifier within my
software development process?

On given results, how can I find the How can I get the best resulis?
maximum number of anomalies?

Release 2007a+ 170/292
Revision 4.2 vA

This guide suggests answers to the following questions.

Steps PolySpace usage PolySpace activities

Orange in selective mode?

| £

Data : VWhat are the costs & benefits?
rules

[Which PolvSpace activities
should be nsed?

[Which steps” Which PolvSpace

tools? ‘Orange 1 exhaustive mode?

[When in my development

cycle? e
: Integration bugs

=

ZAAN

V

Development cycle Data flow / shared conflicts

It answers those questions by means of the following topics: an explanation of each PolySpace approach. A

“PolySpace approach” or “Approach” is defined in this context as the manner of use of PolySpace to achieve a
particular goal, with reference to a collection of techniques and guiding principles. These include suggestions of
different activities which might be completed before functional unit test or integration tests, depending on the
development process:

An explanation of the collection of techniques and guiding principles going to form each Approach.

Fixing red and grey — review run time errors and checks only
Selective orange review — review and find bugs quickly and efficiently. Suitable when time is

short, and the aim is to maximise the number of bugs discovered.
Exhaustive orange review — how much it costs and the value it brings at the unit phase and at the
integration phase

Shared data conflict detection — and the problems it can highlight
Data flow analysis

Integration bugs tracking

Related subjects:
5.1. PolySpace usages

5.2. Standard development process

5.3. Rigorous development process. introducing tools and coding rules

5.4. A quality/qualification appr oach

5.5. Code acceptance criterion

Release 2007a+

Revision 4.2 vA

171/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

5.1. PolySpace usages

PolySpace tools can support two main objectives concurrently.

Reduction of testing and validations costs

Improvement of the software quality

PolySpace can be used in different ways depending on the context, the primary difference being in the approach used to
exploit the results generated. The following diagrams summarise the different approaches.

The aim here is not to compare the cost of certification processes, or of development processes with or without coding
rules. The graphs aim to compare the costs of typical processes with and without PolySpace.

When no coding rules are adopted

During the coding activity, there are two recommended approaches:

¥

Current process
(classical testing)

Bug Detection
Cost

PolySpace:
. File by file analysis
. Red and g1

Selective

PolySpace:

. File by file analysis

Red and gre 3 !

Software
Quality

L

Note that the sentence in previous figure about “file by file analysis” needs to be understood as a “package by package
analysis”. Indeed, most of the time each package is developed in a file. The first approach is to use only the red and grey
results: fix the red bugs, and check the for abnormalities.

The second approach involves the same activities, and adds a partial review of the orange warnings. The aim is to find as
many bugs as possible, with very limited efforts. This approach finds more bugs and therefore improves the quality. It
does involve more effort, but the amount of time spent to find each bug remains very small.

Using PolySpace on one single package is efficient: even though there is no knowledge of the package context,
experience shows that 50% of the bugs detected by PolySpace can be found locally. When it is has been successfully
implemented, the development team can migrate to a more demanding (and more fruitful) level of usage of PolySpace.
This migration is not always desirable; it of course depends on the project’s context. Then, after coding, before the testing
activity:

Release 2007a+ 172/292
Revision 4.2 vA

Current process
(classical testing)

Bug Detection
Cost

PolySpace:
Integration analyv=is
* ERed and zrey

PolySpace:
- Integration analysis
» Bed and zrey

shared data conflicts

J Software

Quality

Y

Again, the first approach is to use only the red and grey results: fix the red bugs, and check the dead code.
The second approach includes the same activities, and adds a partial review of the and of the

When coding rules have been adopted

The main difference here by comparison with the previous processes is with respect to the cost of bug detection. When
PolySpace is used in accordance with a set of coding rules, the bug detection cost is much lower. there are three
recommended ways to use PolySpace, during the coding activity:

Current process
(with coding rules)

Bug Detection
Cost

PolySpace:
* File bv Fils analvsis
L Red and Grey

PolySpace:
&« File by file anabms
. Fed and gren

i B o
I 1 JCRARE

PolySpace:
* File by fil= analy=is
& Red and gres

Software
Cuality

L

Compared to the previous situation (where no coding rules are in place), an additional possibility exists. Instead of
reviewing only certain orange warnings in a file, all of them are systematically checked. This is possible as when the right
coding rules are respected (see the end of this section for recommendations). That leads to there being only a few

orange checks in a file, and therefore checking all of them is potentially very fruitful. A large proportion of those anomalies
require some correction to the code, with some users reporting up to 50%.

Then, after coding, before the testing activity:

Release 2007a+ 173/292
Revision 4.2 vA

Current process
(with coding rules)

Bug Detection

Cost
PolySpace:
* Integration amalysis
PeolySpace: ' Eed a.u:d zrey
» Integration analysis ertive O
- Eed and = &Y
Software
Quality
L
Note: It is also possible to migrate from a selective to an exhaustive when performing an integration analysis, but this

activity isvery costly.

In a certification context

A “quality/qualification” approach where PolySpace replaces an existing activity. In this case quality is already high and
maybe at a “zero defects” level, but PolySpace will reduce the cost of achieving such quality. In this context, PolySpace
can replace the traditional time consuming control and data flow analysis, as well as shared data conflict detection.

As an acceptancetool

The fourth and last approach implies the use of PolySpace as a method of meeting an acceptance criterion.

Release 2007a+ 174/292
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

5.2. Standard development process

This approach is mainly for consideration by a project manager rather than a quality manager. It amsto improve
productivity rather than to prove the quality of the application being analysed.

The softwar e development process

This section describes how to introduce PolySpace to a standard software development process. For instance,
* InAda, no unit test tools or coverage tools are used: functional tests are performed just after coding

* InC, ether no coding rules are present or they are not always followed.

The figure below illustrates the revised process, with PolySpace introduced in the tool chain. It will be used just before
functional testing.

Dezign : Coding PolySpace , | Functional y | Validation
r'-, PI"'. tests

The objective of using PolySpace

PolySpace will be used to improve the software quality and productivity. It will help the developer to find and fix bugs
much quicker than the existing process. It will also improve the software quality by finding bugs which would otherwise
be likely to remain in the software after delivery.

It doesn’t prove the robustness of the code because the prime objective isto deliver code of at least similar quality to
before, but to ensure that code is produced in a predictable timeframe with controlled and minimized delay and costs.
Another approach for this purpose is described in the next section.

The PolySpace appr oach

The way forward hereisfor PolySpace Desktop to be applied by developers or testers on afile-by-file/package-by-
package analysis basis. The users will use the default PolySpace Desktop options, the most prominent feature of which
isthe automatically generated “main” function. Thismain will call all unused procedures and functions with full range
parameters. The users will be required to fix red errors and examine gr ey code, and they will also do a

Release 2007a+ 175/292
Revision 4.2 vA

OTAMEE TEWIa W

M of bug found per mnute

OFAfEe TRView

Cost/benefits of a selective orange review

This selective orange review can be applied on specific Run Time Error categories, such as “Out of Bound Array Index”,
or on al error categories. This depends on each individual developer’s coding style.

It istrue that with this approach some bugs might remain in the unchecked oranges, but it represents a significant move
forward from the initial position. Coding rules would help further if more improvement is sought.

A complementary approach

A second approach is also possible which, unlike the first, focuses only on an increase in quality. If coding rules are
applied, this second approach will turn into a cheap and productive one as described by the second arrow on the
illustration.

Integration tests are also possible at this stage. Thisanalysis will be performed by PolySpace on larger modules, and the
orange review will be focused on Run Time errors which wer e not examined after the file-by-file/package-by-
package analysis.

For instance, if the project construction is such that scalar overflows can only be reviewed at integration phase, then
* Theuser will ignore orange overflows with PolySpace Desktop when performing file-by-file analysis,

* Hewill examine them with PolySpace Verifier.

I ntegration with configuration management tools

PolySpace can also be used by project managers to establish and test for transition criteria to proceed to file check-in

» Daily check-in: PolySpace Desktop is applied to the file(s) currently under development. Compilation
must complete without the permissive option.

* Preunit test check-in: PolySpace Desktop is applied to the file(s) currently under development.

* Preintegration test check-in: PolySpace Verifier is applied to the whole project until compilation can
complete without the permissive option. This stage will differ from the daily check-in activity because link
errors will be highlighted here.

* Prebuild for integration test check-in: PolySpace Verifier is applied to the whole project, with all
multi-tasking aspects accounted for as appropriate.

* Prepeer review check-in: PolySpace Verifier is applied to the whole project, with al multi-tasking
aspects accounted for as appropriate.

For each check-in activity mentioned above, the transition criterion could be: “No bug found within the allocated time
defined by the process’. For instance, if the process defines that 20 minutes should be dedicated to a selective review, the
criterion could be: “no bug found during these 20 minutes’.

Release 2007a+ 176/292
Revision 4.2 vA

Costs and benefits

Using PolySpace Desktop to find unit/local bugsin this way will both reduce the cost of the software and improve the

quality:

* Red checksand bugsin . The number of bugs found thanks to these colours can vary from
one user to another, but experience shows that on average, around ¥4 of the analyses will reveal ared error
(s) and/or will revea bugsin code.

. . Experience suggests that the time needed to find one bug per file varies from 5 minutes

to 1 hour, and is typically around 30 minutes. This represents an average of two minutes per orange check

review, and atotal of 20 orange checks per package in Ada and 60 orange checks per filein C.

With this approach, using PolySpace to find integration bugs will increase the quality, but at a higher usage cost:

Release 2007a+
Revision 4.2 vA

e 75% of bugsarelocal in thistype of code: the selective orange review at integration phase reveals a
Ys of integration bugs, and the rest (%) of local bugs. Finding real integration bugs might require another
process which requires coding rules to be efficient.

* Setup time: the time needed to setup the analysis can be higher due to alack of coding rules. Code
modifications might be needed. Most of these modifications cannot be automatic without changesin the
process.

* Anomaliesand complexity: In this configuration, any particular file will contain more oranges when
analysed with PolySpace Verifier than with PolySpace Desktop (about twice as many). These oranges are
likely to be anomalies, and will responsible for the orange check review becoming more time consuming.
A morestable software version impliesa later analysis. If PolySpace Verifier is used instead of
PolySpace Desktop, bugs might be revealed much later because a more complete version of the software can
only be provided at alater phase in the project.

 Anexhaustive orangereview can take 25 men-days for a 50000 line project. Thiswould represent
the effort where the aspiration is for bug free software, assuming that a 50000 line application contains
about 3000 orange checks

177/292

PonSpace

TECHNHOLOGIES

Previous Back to table of contents Next

5.3. Rigorous development process: introducing tools and coding
rules

Thisis of interest for both project and quality managers, who are likely to be interested in this approach.
The softwar e development process

This section describes how to use PolySpace within a process which has the following characteristics. In Ada, unit testing
tools or coverage tools are used.

The picture below describes the new process, with PolySpace introduced into the tool chain. It will be used just before
functional testing.

Design | } | Coding | Coding PolySpace Functional "., Validation
|I'| [II'- I', F tesis |III
! 1| Bules \ \ \

! | 4 L
\ check- |
ng .

|/ s s '

PolySpace will be used to increase both the software quality and its productivity.

The PolySpace approach

Use PolySpace Desktop on afile by file analysis basis.

The“main” used to analyse each fileis very often automatically generated by the project, and not by
PolySpace Desktop (unlike the standard approach).

I nitialisation ranges should be applied to input data. For instance, if avariable“x” isread by functions
inthefile, and if x can be initialized to any value between 1 and 10, this information should be included as
part of the analysis.

» [Optional] Some properties of output variables might be checked. For instance, if avariable“y” is
returned by afunction in the file and should always be returned with a value in the range 1 to 100, then
PolySpace Desktop can flag instances where that range of values might be breached.

» Rederrorswill be fixed and grey code examined, and an will be completed.
» Theusage of permissive options is not advisable at this stage.

Note The distinguishing feature for this approach as compared with the standard approach is
that the orange check review is exhaustive here.

A complementary approach

A second approach is also possible. Use PolySpace Verifier at integration phase to track integration bugs, and review:-

Release 2007a+ 178/292
Revision 4.2 vA

* Red and grey integration checks,

* Orange checks on code which produced green checks when analysed by Desktop.
* Theremaining orange checks with a selective review: Integration bug tracking.

Costs and benefits

With this approach, using PolySpace Desktop to find bugs will typically bring the following benefits

e 35 per file, 3 per fileyielding an average of 1 bug per file. Typicaly, 2 of
these oranges might represent the same bug, and another might represent an anomaly.

* Anaverage of 2 analyses by PolySpace Desktop per file istypical before the file can be checked-in to
the configuration management system.

* Theaverage analysistimeisabout 15 minutes.

Note If the development process includes data rules which determine how the data flow are
designed, the benefits might even be higher. The data rules would implicitly reduce the potential for
PolySpace Verifier to find integration bugs.

With this approach, using PolySpace to find integration bugs might bring the following results. On atypical 50000 line
project:
» A selective orange check review might reveal one integration bug per hour of orange code review
and takes about after 6 hours, which long enough to review the main orange points throughout the whole

application. This represents a step towards an exhaustive orange check review. Spending moretimeis
unlikely to be efficient, and won’t guarantee that no bugs remain.

» Anexhaustive orange review takes between 4 and 6 days, given that a 50000 lines of code application
might contain about 400-800 orange checks.

Release 2007a+ 179/292
Revision 4.2 vA

y Eﬂ HHOLOGIES
Previous Back to table of contents Next

5.4. A quality/qualification approach
Quality managers are likely to be interested in this approach.

The softwar e development process

This section describes how to use PolySpace within a process which includes coding and datarules. Such a
process istypical of a qualification environment, with existing activities which must be performed. Before the
introduction of PolySpace they will have been performed by hand, with classical testing methods, or using
previous generation tools. PolySpace will replace these activities, and reduce the cost of the process.

PolySpace is not intended to improve the quality which is already at the desired level. It will complete the same
tasks more efficiently, bringing improved productivity.

The objective of using PolySpace

PolySpace will be used to increase the productivity on existing activities, such as
. Data and control flow analysis
. Shared data detection

. Robustness unit tests.

The PolySpace appr oach

Depending on the activity replaced, both PolySpace Verifier and/or Desktop may be useful.

» For dataand control flow analysis and shared data detection. PolySpace Verifier can be used on
the whole application or on a sub-section of the application.

» For robustness unit tests (as opposed to functional unit tests). PolySpace Desktop might be used
in the same way as the one applied to the Rigorous devel opment process.

Costs and benefits

The replacement of these activities can lead to a significant cost reduction. For instance, the time spent on data
and control flow analysis can drop from 3 months to 2 weeks.

Quality will also become much more consistent since a much greater part of the process will be automated.
PolySpace tools are equally efficient on a Friday afternoon and on a Tuesday morning!

Release 2007a+ 180/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

5.5. Code acceptance criterion

This is likely to be of interest for a quality manager in a company which is out-sourcing software
development, and who wishes to impose acceptance criteria for the code.

The software development process

This section describes how to define transition criteria for intermediate or final deliveries.

The objective of using PolySpace

The objective is to control and evaluate the safety of an application. The means for doing so could vary
from no red errors to exhaustive oranges review.

The PolySpace Approach

Either PolySpace Desktop or Verifier can be used at this stage, depending on the project size. The
example list of acceptance criteria below shows increasingly stringent tests, any or all of which may be
adopted.

. No compilation errors
. No compilation warning errors
. No red code sections
. No unjustified grey code section
. A selective/exhaustive orange review according to the development process
o 20% orange code sections reviewed or a time base threshold (described in the previous
sections)
1 100% orange code sections reviewed
. 20% concurrent access graph reviewed
. 100% concurrent access graph reviewed

Release 2007a+ 181/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6. Advanced

Related subjects:
6.1. PolySpace setup

6.2. PolySpaceresults analysis

Release 2007a+ 182/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

6.1. PolySpace setup

These are the rules followed by PolySpace. It is strongly recommended that the preceding sections
should be read and understood before applying the rules described below. Some rules are mandatory;
others facilitate improved selectivity.

The following describes the default behaviour of PolySpace. If the code to be analysed does not
conform to these assumptions, then some minor modifications to the code or to the PolySpace run time
parameters will be required.

. The main procedure must terminate in order for entry-points (or tasks) to start.

. All tasks or entry-points start after the execution of the main has completed. They all start
simultaneously, without any predefined assumptions regarding the sequence, priority and pre-
emption.

If an entry-point is seen as dead code, it can be assumed that the main contains (a) red error(s) and
therefore does not terminate. PolySpace assumes:

. no atomicity,

. Nno timing constraints.

Related subjects:
6.1.1. Can an application without “ main” be analysed?
6.1.2. Modelling tasks, interruptions and events
6.1.3. Shared variables
6.1.4. Miscellaneous

Release 2007a+ 183/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

6.1.1. Can an application without “main” be analysed?

Problem

My application doesn't have a main procedure. How can | analyse it using PolySpace?

Explanation

When your application isafunction library (API) or asingle module, you have to provide a main that calls those
functions because of the execution model PolySpace uses. The reason why you have to do so is becauseit is much
more powerful to take into account the calling sequence in the application to improve precision.

Solution

* ldentify the API (application program interface) functions and extract their declaration;

* Createamain that will contain the declaration of avolatile variable for each typethat is
mentionned in the function prototypes.

» Create aloop with avolatile end condition. Inside this loop, create a switch bloc with avolatile
condition and finaly, for each API function, create a case branch that calls the function using, as
parameters, the volatile variables created before.

Example

The APl spec are:
function funcl(x in integer) return integer;
procedure func2(x in out float, y in integer);

The main you'll have to create is the follow ng :
procedure nmain is
a,b,c,d: interger;
e, f: float;
pragma volatile (a);
pragna volatile (e);
-- W need an integer and float variable as a function paraneter

begi n
| oop
f 1= e;
c: =a,
d: =a;
if (a=1) then b:= funcl(c); end if;
if (a =1) then func2(e,d); end if;
end | oop
end nmai n;

Release 2007a+ 184/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.2. Modelling tasks, interruptions and events

Related subjects:
6.1.2.1. Scheduling model

6.1.2.2. M odelling synchronous tasks
6.1.2.3. Interruptions and asynchronous events/tasks
6.1.2.4. Areinterruptions maskable or preemptive by default?

Release 2007a+ 185/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

6.1.2.1. Scheduling model

A problem can occur when some code is analysed and the results suggest that all background tasks
are dead code. In the same way, the problem could the same (grey code) if several tasks (infinite
loops) are defined and run concurrently in an RTOS.

In the PolySpace model, the main procedure is executed first before any other task is started. After it
has finished, all task entry points are assumed to start concurrently, meaning they can interrupt each
other at any time. This is an accurate upper approximation model for most concurrent RTOS.

Tasks and main loops need to simply declare as entry points. It only concerns task not defined using
keyword of the Ada language.

Example:
procedure body back ground task is
begi n

loop -- infinite |oop

-- background task body
-- operations
-- function cal
nmy_ori gi nal _package. ny_procedur e;
end | oop
end back _ground task

Launching command:

pol yspace-ada —entry-poi nts package. ot her task, package. back ground task

If the tasks are already infinite loops, simply declare them as mentioned above.
Limitation:
. A main procedure is always needed using —main option.

. Thetasks declared in -entry-points may not take parameters and may not have return
values: procedure MyTask is ..end MyTask;

If it is not the case, it is mandatory to encapsulate with a new procedure. In this case, the real
task will be called inside.

. The main procedure cannot be called in a defined or declared task.

Release 2007a+ 186/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.2.2. Modelling synchronous tasks

Problem

My application has the following behaviour:

* Onceevery 10 ms. void tsk_10ms(void);
e Onceevery 30ms. ...
* Onceevery 50 ms

My tasks never interrupt each other. My tasks are not infinite loops - they always return control to the calling
context.
procedure tsk_10ms;
begin do_things and exit();
-- it's inportant it returns control
end;

Explanation

If each task was declared to Verifier by using the option

pol yspace- ada -tasks pack name.tsk _10nms, pack _nane.tsk 30ns, pack_nane.
tsk_50ns

then the results would be valid — but there may be more warnings than necessary (that is, the results are less
precise) because more scenarios than could actually happen at execution time are modelled.

In order to address this, PolySpace Verifier needs to be informed that the tasks are purely sequential - that is, that
they are functions to be called in adeterministic order. This can be achieved by writing afunction to call each of
the tasks in the correct sequence, and then declaring this new function as a single task entry point.

Solution 1

Write afunction that calls the cyclic tasksin the right order: thisis an exact sequencer. This sequencer isthen
identified to Verifier asasingle task.

This sequencer will be a single PolySpace task entry point. This solution:

* ISmore precise;
* but you need to know the exact sequence of events.

procedure body one_sequential Ada function is
begi n
| oop
tsk_10ns;
t sk_10ms;

Release 2007a+ 187/292
Revision 4.2 vA

tsk_10ns;
t sk_30ns;
tsk_10ns;
tsk_10ns;
t sk_50ns;
end_| oop
end one_sequential function;

pol yspace-ada -tasks pack_nane. upper _appr ox_Ada_sequencer

Solution 2

Make an upper approximation sequencer, which takes into account every possible scheduling. This solution:
Isless precise
is quick to code, especially for complicated scheduling.

procedure body upper _approx_ Ada function is

random : i nteger;
pragma vol atile (random;

begi n
| oop
if (random = 1) than tsk_10nms; end if;
if (random = 1) than tsk _30ns; end if;
if (random = 1) than tsk _50nms; end if;
end_| oop

end one_sequenti al function;

pol yspace- ada -tasks pack_namne. upper _approx_Ada_function

H Note If thisisthe only task, then it can be added at the end of the main.

Release 2007a+ 188/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.2.3. Interruptions and asynchronous events/tasks

Problem

| have interrupt service routines which appear in grey (dead code) in the Viewer.

Explanation

The grey code indicates that this code is not executed and is not taken into account, so all interruptions and tasks
areignored by PolySpace Verifier.

The execution model is such that the main is executed initially. Only if the main terminates and returns control (i.
e. if itisnot an infinite loop) will the task entry points be started, with all potential starting sequences being
modeled.

My interruptsitl and it2 cannot preempt each other.

If these 3 following conditions are fulfilled:

* theitl and it2 functions can never interrupt each other;
e eachinterrupt can be raised several times, at any time;
» they arereturning functions, and not infinite loops.

Then you can group non preemptive interruptions in a single function and declare that function as atask entry
point.

procedure it_1;
procedure it_2;

task body all interruptions_and events is
random bool ean;
pragma vol atile (random;
begi n
| oop
if (random then it_1; end if;
if (randonm) then it_2; end if;

end_| oop
end all _interruptions_and _events;
pol yspace- ada -tasks package.all _interruptions_and _events

My interruptions can preempt each other

If two interruption can be interrupted, then:
» encapsulate each of them in aloop;

Release 2007a+ 189/292
Revision 4.2 vA

* declareeach loop as atask entry point.

package body original file is

procedure it _11is begin ... end;

procedure it _2 is begin ... end;

procedure one task is begin ... end;
end;

package body new poly is

procedure polys it 1 is begin loop it_1; end | oop; end;
procedure polys it 2 1is begin loop it_2; end | oop; end;
procedure polys one task is begin |loop one_task; end | oop; end;

pol yspace-ada -tasks new poly. polys it _1,new poly. polys it _2,new poly.
pol ys_one_t ask

Release 2007a+ 190/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.2.4. Are interruptions maskable or preemptive by default?

Problem

Inmy maintask | useacritical section but | still have unprotected shared data. My application contains
interrupts. Why is my variable analyzed as unprotected?

Explanation

PolySpace Verifier does not distinguish between interrupt service routines and tasks. If you specify an interrupt to
be a"-task" entry point, it will have the same priority level asthe other procedures declared as tasks ("-tasks'
option). Therefore, as PolySpace Verifier makes an upper approximation of all scheduling and all
interleaving, it includesthe possibility that the I SR might beinterrupted by any other task. There are more
paths modelled than can happen during execution, but this has no adverse effect on of the results obtained;

Solution

Embed your interrupt in a specific procedure that uses the same critical section as the one you use in your main
task. Then, each time thisfunction is called, the task will enter a critical section which will be equivaent to a non-
maskabl e interruption.

Original packages

package ny _real package is
procedure ny_mai n_t ask;
procedure ny _real it;
shared X: | NTEGER = O;

end ny_real package;

package body ny real package is
procedure ny_main_task is
begi n
mask it;
shared_x:= 12;
unmask it;
end ny_rmai n_t ask;

procedure ny real it is
begi n
shared_x: = 100;
end nmy real it;
end ny_real package;

Extra packages

Release 2007a+ 191/292
Revision 4.2 vA

An extra package necessary to embed the task with body my real package;

package extra_additional pack is
procedure pol yspace real it;
end extra_additional package;

package body extra_ additional pack is
procedure pol yspace real it is

begi n
mask it;
my real package.ny real it;
unmask _it;

end;

end extra_additional package;

Command lineto launch PolySpace Verifier
pol yspace-ada \

-tasks ny_real package. ny_mai n_t ask, extra_addi ti onal _pack. pol yspace_real _it

\
-mai n your _package. your_mnain

Release 2007a+
Revision 4.2 vA

192/292

y Q{ HHOLOGIES
Previous Back to table of contents Next

6.1.3. Shared variables

Abstract

All of my shared variables appear in in the variable dictionary.

Explanation

When you launch PolySpace Verifier without any option all tasks are examined at the same level, making no
assumptions about priorities, sequence order, or timing. In this context, shared variables will always be
considered as unprotected.

Solution

Y ou can use the following mechanisms to protect your variables

e Critical section and mutual exclusion (explicit protection mechanisms);
* Access pattern (implicit protection);
* Rendezvous.

See below for more details.

Related subjects:
6.1.3.1. Critical sections

6.1.3.2. Mutual exclusion
6.1.3.3. Access pattern
6.1.3.4. Rendez vous
6.1.3.5. Semaphores

Release 2007a+ 193/292
Revision 4.2 vA

PonSp

Previous Back to table of contents

ace

TECHNOLOGIES

6.1.3.1. Critical sections

These are the most common protection mechanism in applications and they are simple to use in PolySpace

Verifier:

. if onetask makesacall to aparticular critical section, all other tasks will be blocked on the

"critical-section-begin” function call until the originating task calls the "critical-section-end” function;

. this doesn't mean the code between two critical sectionsis atomic;

* |tisabinary semaphore: you only have one token per label (in the example below CS1). Unlike
many implementations of semaphores, it is not a decrementing counter that can keep track of a number

of attempted accesses.

package my_taskingis
procedure procl;
procedure procz,;
procedure ny_nmain;
X: | NTECER,
Y: | NTECGER;

end ny_tasking;

package body my_tasking

with pkutil; use pkutil;

package body ny tasking is
procedure procl is

begi n
begi n_cs;
X =12; -- X is protected
end_cs;
end;
procedure proc2 is
begi n
begi n_cs;
X =11; -- X is protected
end_cs;
Y = 101; -- Y is not protected
end;
procedure ny_main is
begi n
X :=0;
Y := 0;
end

end ny_t aski ng;

Release 2007a+
Revision 4.2 vA

194/292

package pkutil is

procedur e begin_cs;
procedure end_cs;
end pkutil;

package body pkutil is

procedure Begin CSis
begi n

nul | ;
end Begi n_CS;
procedure End CS is
begi n

nul | ;
end end_cs;

end pkutil;

L aunching command

pol yspace- ada \
-aut omati c- st ubbi ng \
-main ny_tasking.nmy_main \
-tasks ny_taski ng. procl, pktaski ng. proc2 \
-critical -section-begin "pkutil.begin cs:CS1" \
-critical-section-end "pkutil.end cs: CS1"

Also refer to atomicity.

Release 2007a+ 195/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.3.2. Mutual exclusion

Mutual exclusion between tasks or interrupts can be implemented while preparing PolySpace Verifier for launch
setting.

Suppose there are entry-points which never overlap each other, and that variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time, you may want PolySpace Verifier to take
this into account. Consider the following example.

These entry-points cannot overlap:

. tl and t3
. t2,t3 and t4

These entry-points can overlap:

. tl and t2
. tl and t4

Before launching Verifier, the names of mutually exclusive entry-points are placed on a single line

pol yspace-ada -tenporal -exclusion-file nmyExclusions.txt -entry-points t1,t2,
t3,t4

The myExclusions.txt is also required in the current directory. This will contain:

tl1t3
t2 t3 t4

Release 2007a+ 196/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.3.3. Access pattern

If a variable is a structure, then provided the same fields aren’t being accessed, by its nature the variable is
protected even if different tasks are accessing it. In PolySpace, this is regarded as protection by “access pattern”
which will be shown in the Shared Variables section of the Viewer.

Consider the following example.

If a variable X, is a structure containing two fields, A and B, and

e task 1 only reads/writes field A
* task 2 only reads/writes field B

Then x is shown as being protected by access pattern in PolySpace Viewer.

Release 2007a+ 197/292
Revision 4.2 vA

PonSpace

Previous

TECHNOLOGIES

Back to table of contents

6.1.3.4. Rendez vous

All Ada rendezvous are taken into account without any input from the user. This is the only way to
synchronize tasks. PolySpace Verifier does not handle atomicity so other task synchronisation
mechanisms (including the use of critical sections) are not recognized by PolySpace Verifier.

package fisrt_task

other tasks

package first task is
task task 1 is
entry INT,

end task_1;
end first task;
package body first task is
task body task 1 is
begi n
accept INT,
-- do things

do
-- do things
-- call functions
X = 12;

end; -- end accept

end task_1;
end first task;

entry ORDER (X: out Integer);

accept ORDER (X: out |nteger)

-- return to mai n execution

with first task; use first_task;
package other _tasks is
task task_2 is
end task_2;
procedure main;
end ot her tasks;
package body ot her tasks is
task body task 2 is

X: | NTECGER;
begi n

task _1.init;

task_1. Order(X);
end task_2;
procedure main is
begi n;

nul | ;
end;

end ot her tasks;

The use of explicit tasks makes it unnecessary to use the —entry-points option in your launching script.

polyspace-ada -main other_task.main

Release 2007a+
Revision 4.2 vA

198/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.3.5. Semaphores

Although it is possible to implement in ada, it is not possible to take into account a semaphore system call in
PolySpace Verifier. Nevertheless, Critical sections may be used to model the behaviour.

Release 2007a+ 199/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.4. Miscellaneous

Related subjects:
6.1.4.1. Mailboxes

6.1.4.2. Atomicity
6.1.4.3. Priorities

Release 2007a+ 200/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

6.1.4.1. Mailboxes

Problem

My application has several tasks:
* some that post messages in a mailbox;
» othersthat read these messages asynchronously.

This communication mechanism is possible because the OS libraries provide send and receive procedures. | do not have the
source files because these procedures are part of the OS libraries.

Explanation

By default, PolySpace Verifier will automatically stub these send/receive procedures. Such a stub will exhibit the following
behaviour:

« for send(char *buffer, int length): the content of the buffer will only be written when the procedure is called;
» for receive(char *buffer, int *length): each element of the buffer will contain the full range of values
appropriate to that data type.

Solution

Y ou can provide similar mechanisms with different levels of precision.

e quick and easy to code

e imprecise because there is no direct connection between a mailbox sender
and receiver. It meansthat even if the sender is only submitting datawithin a
small range, the full data range appropriate for the type(s) will be for the
receiver data.

e canbevery costly (time consuming) to implement;

e canintroduce errorsin the stubs;

e istoo much effort compared with the solution below;

e precise, but does not provide a much better precision than the upper
approximation.

L et PolySpace Verifier stub
automatically

Provide areal mailbox mechanism

Provide an upper approximation |in which each new read to the mailbox reads one of the recently posted messages, but not
of the mailbox necessarily the last one.

* quick and easy to code;
e givesprecise results,
e seedetailed implementation below.

package mailboxesis

type Bl G_ARRAY is
array (1..100)of | NTEGER,
type MESSAGE is
record
| engt h: | NTECER;
content: Bl G _ARRAY;
end MESSAGE;
MAI LBOX : MESSAGE;

Release 2007a+ 201/292
Revision 4.2 vA

procedure send
(X in MAI LBOX)
procedure receive
(X out MAILBOX);
end nai | boxes;

package body mailboxesis

procedure send (X in MESSAGE) is

random : bool ean;

pragma Vol atil e_ada. ht m (randon;
begi n

if (random then

MAI LBOX: = X;

end if;

-- a potential wite

-- to the nail box
end;

procedurereceive

(X: out MESSAGE) is
begin

X: = MAI LBOX;
end;

task body task_1is
nmsg : MESSAGE;
begi n
for i in1 .. 100 |oop
msg.content (i): =i
end | oop;
nmsg.l ength : = 100;
send(nsg) ;
end task 1;
task body task_2 is
nmsg : MESSAGE;
begi n
recei ve(nsg);
if (meg.length = 100)
end;

Provided that each of these tasks isincluded in a package.
pol yspace-ada -nai n a_package. a_procedure

Release 2007a+
Revision 4.2 vA

202/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.1.4.2. Atomicity

Atomic: In computer programming, atomic describes a unitary action or object that is essentially indivisible,
unchangeable, whole, and irreducible

Atomicity: In a transaction involving two or more discrete pieces of information, either all of the piecesare
committed or none are.

Instructional decomposition

In general terms, PolySpace Verifier does not take into account either CPU instruction decomposition or timing
considerations.

It is assumed by PolySpace that instructions are never atomic except in the case of read and write instructions.
PolySpace Verifier makes an upper approximation of all scheduling and all interleaving. There are more paths
modelled than could happen during execution, but given that all possible paths are always analysed, this has no
adverse effect on of the results obtained.

Consider a 16 bit target that can manipulate a 32 bit type (an int, for example). In this case, the CPU needs at least
two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value of 0x0000. Now suppose 0xFF55 is
written it. If the operation was not atomic it could be interrupted by another instruction in the middle of the write
operation.

e Task I: Writes OxFF55 to x.
e Task 2: Interrupts task 1. Depending on the timing, the value of x could be any of 0xFFO00,
0x0055 or 0xFF55.

PolySpace Verifier considers write/read instructions atomic, so task 2 can only read OxFF55, even if X is not
protected (refer to Protecting shared variables).

Critical sections

In terms of critical sections, PolySpace Verifier does not model the concept of atomicity. A critical section only
guarantees that once the function associated with -critical-section-begin has been called, any other function
making use of the same label will be blocked. All other functions can still continue to run, even if somewhere else
in another task a critical section has been started.

PolySpace Verifier’s analysis of Run Time Errors (RTE) supposes that there was no conflict when writing the
shared variables. Hence even if a shared variable is not protected, the RTE analysis is complete and correct.

More information is available in the critical sections section.

Release 2007a+ 203/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

6.1.4.3. Priorities

Priorities are not taken into account by PolySpace as such. However, the timing implications of software
execution are not relevant to the analysis performed by Verifier, which is usually the primary reason for
implementing software task prioritisation. In addition, priority inversion issues can mean that it would be
dangerous to assume that priorities can protect shared variables. For that reason, PolySpace make no such
assumption.

In practice, while there is no facility to specify differing task priorities, all priorities ar e taken into account
because of the default behaviour of PolySpace Verifier assumes that:

» all task entry points (as defined with the option - ent r y- poi nt s) start potentially at the
same time;

* they can interrupt each other in any order, no matter the sequence of instructions — and so all
possible interruptions will be accounted for, in addition to some which can never occur in practice.

If you have two tasks t1 and t2 in which t1 has higher priority than t2, simply use pol yspace- ada —entry-
points t1,t2 inthe usual way.

* tl1 will be able to interrupt t2 at any stage of t2, which models the behaviour at execution time;
* 2 will be able to interrupt t1 at any stage of t1, which models a behaviour which (ignoring
priority inversion) would never take place during execution. PolySpace Verifier has made an upper
approximation of all scheduling and all interleaving. There are more paths modelled than could
happen during execution, but this has no adverse effect on of the results obtained.

Release 2007a+ 204/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

6.2. PolySpace results analysis

Related subjects:
6.2.1. Integration bug tracking

6.2.2. How to find bugsin unprotected shared data
6.2.3. Dataflow analysis

6.2.4. Cost and benefits of an exhaustive orangereview
6.2.5. PolySpace analysis duration

Release 2007a+ 205/292
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

6.2.1. Integration bug tracking

By default, integration bug tracking can be achieved by applying the selective orange methodology to
integrated code. Each error category will be more likely to reveal integration bugs, depending on the
chosen coding rules for the project.

For instance, consider a function receives two unbounded integers. The presence of an overflow can
only be checked at integration phase, since at unit phase the first mathematical operation will reveal an
orange check.

Consider these two circumstances:

. Whereintegration bug tracking is performed in isolation, a selective orange review will highlight
most integration bugs. In this case a PolySpace Verifier analysis has been performed
integrating tasks.

. Where integration bug tracking is performed together with an exhaustive orange review at unit
phase. In this case a PolySpace Desktop analysis has been performed on one or more
packages.

In this second case, an exhaustive orange review will already have been performed package by
package at a unit level. Therefore, at integration phase only checks that have turned from green to
another colour are worth assessing.

For instance, if a function takes a structure as an input parameter, the standard hypothesis made at
unit level is that the structure is well initialised. This will consequentially display a green NIV check at
the first read access to a field. But this might not be true at integration time, where this check can turn
orange if any context does not initialise these fields. These orange checks will reveal integration bugs.

Release 2007a+ 206/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

6.2.2. How to find bugs in unprotected shared data

Based on thelist of entry pointsin a multi-task application, PolySpace identifies alist of shared data and provides
several pieces of information about each entry:

 Thedatatype;

» Alist of reading and writing accesses to the data through functions and entry points;
* Thetype of any implemented protection against concurrent access.

A shared dataitem isaglobal dataitem that isread from or written to by two or more tasks. It is unprotected from
concurrent accesses when one task can access it whilst another task isin the process of doing so. All the possible
situations are considered below.

* If thereisapossible scenario which would lead to such conflict for a particular variable, then a
bug exists and protection is required.

» If there are no such scenarios, then one of the following explanations may apply:

* The compilation environment guarantees an atomic read/write access on variable of type
lessthan 1, 2 ... bytes, and therefore all conflicts concerning a particular variable type still
guarantee the integrity of the variable’s content. But beware when porting the code!
 Thevariableis protected by acritical section or a mutual temporal exclusion. Y ou may
wish to include this information in the PolySpace Verifier launching parameters and re-analyse.

It is also worth checking whether variables are modified which are supposed to be constant. Use the
variables dictionary.

Release 2007a+ 207/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

6.2.3. Dataflow analysis

Data flow analysisis often performed within certification processes - typically in the avionic, aerospace or
transport markets.

This activity makes heavy use of two features of PolySpace results, which are available any time after the Control

and Data Flow analysis phase.
o Cadl tree computation
» Dictionary containing read/write access to global variables. (This can also be used to build a
database listing for each procedure, for its parameters, and for its variables.)

PolySpace can help you to build theses results by extracting information from both the call tree and the dictionary.

Release 2007a+ 208/292

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.4. Cost and benefits of an exhaustive orange review

Related subjects:
6.2.4.1. Costs and Benefits

6.2.4.2. Method

Release 2007a+ 209/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

6.2.4.1. Costs and Benefits

. Costs
Experience suggests that an average of 50 orange (unproven) checks by hour is typical.
If the checks are reviewed in the sequence suggested by the selective review approach, then the first
80% of these checks will take a disproportionately small amount of time.

. Benefits
The purpose of this activity is to assess the probability of missing an orange containing a bug when
performing a “selective orange review”. This needs to be balanced with the cost of a bug left in the
code. Using the methodological assistant, unproven checks are selected and sorted by PolySpace.

Release 2007a+ 210/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.4.2. Method

There are sometimes situations where files contain a particularly high number of orange checks
compared with the rest of the application. This may well highlight design issues.

Consider the three possible reasons for an orange check:
1. Potential bug and Data set issues

2. Inconclusive analysis

3. Basic imprecision

The method described in the following chapter explains how to focus on finding potential bugs in the
orange code. We will focus here on the first and second types. We are assuming that in the modules
containing the most , those checks will prove inconclusive. If PolySpace is unable to
draw a conclusion, the implication is often that the code itself is very complex —which in turn can identify
sections of code of low robustness and quality.

Real bugs and data sets

If the data set analysed reveals real bugs, they should be corrected If it highlights potential input bugs
(depending on the input data which might eventually be used) then the source code should be
commented.

Inconclusive check

The most interesting type of inconclusive check is identified when PolySpace states that the code is too
complicated. In such a case it is usually true that most in the problem file are related,
and that patient navigation will always draw the user back to a same cause — perhaps a function or a
variable modified many times. Experience suggests that such situations often focus on functions or
variables which have also caused trouble earlier in the development cycle.

Consider an example below. Suppose that
. asigned is an integer between -2"31 and 2"31-1
. anunsigned is an integer between 0 and 2"32-1

. The variable "Computed_Speed" is copied into a signed, and afterward into an unsigned, than
signed, than added to another variable, and finally produces 20 overflows (OVFL).

There is no scenario identified which leads to a real bug, but perhaps the development team knows
that there was trouble with this variable during development and the earlier testing phases. PolySpace
has also found this to be a problem, providing supporting evidence that the code is poorly designed.

Basic imprecision

On some rare occasions, a module will contain a lot of similar occurrences of a “basic imprecision”.

Release 2007a+ 211/292
Revision 4.2 vA

This is most likely to be caused by a function close to the edge of an application, or in the stub routines.

In this case, PolySpace can only assist by means of the call tree and dictionary. This code needs to be
reviewed by an alternative activity — perhaps through additional unit tests or code review with the

developer. These checks are usually local to functions, so their impact on the project as a whole is
limited.

Examples of extra activities might be

. Checking an interpolation algorithm in a function

. Checking calibration data consisting of huge constant arrays, which are manipulated
mathematically

Release 2007a+

212/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.5. PolySpace analysis duration

The duration of an analysis is impacted by:

. The size of the code

. The number of global variables

. The nesting depth of the variables (the more nested they are, the longer it takes)

. The depth of the call tree of the application

. The “intrinsic complexity” of the code, particularly with regards to arithmetic manipulation.

The fact that so many factors are involved makes it impossible to derive a precise formula to calculate
analysis duration. Following sub section try to give some hints to reduce time of an analysis.

Related subjects:
6.2.5.1. An ideal application size

6.2.5.2. Why should there be an optimum size?
6.2.5.3. By selecting a subset of code
6.2.5.4. What ar e the benefits of these methods?

Release 2007a+ 213/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.5.1. An ideal application size

There always is a compromise between the time and resources required to analyse an application, and
the resulting selectivity. The larger the project size, the broader the approximations made by
PolySpace. These approximations enable PolySpace to extend the range of project sizes it can
manage, to perform the analysis further and to solve traditionally incomputable problems. However,
they also mean that the benefits derived from analysing the whole of a large application have to be
balanced against the loss of precision which results.

This is why it is recommended to begin with file by file analyses (when dealing with C

language), package by package analyses (when dealing with Ada language) and class by class
analyses (when dealing with C++ language). The maximum application size is between twenty (for C
++) and fifty thousand lines of code (for C and Ada). For such applications, approximations should not
be too significant. Take care that some times analysis time should not be reasonable.

Experience suggests that subdividing an application prior to analysis will normally have a beneficial
impact on selectivity — that is, more red, green and grey checks, fewer orange unproven and
therefore more efficient bug detection.

. A
%o of cranges

Oranges due to complexity

Oranges due to
missing parts of the
software

Size (lines of code)

Best usage.
Between 20 and 30K lines

A compromise between selectivity and size

Release 2007a+ 214/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.5.2. Why should there be an optimum size?

PolySpace has been used to analyse numerous applications with greater than one hundred thousand
lines of code. However, as project sizes become very large PolySpace Verifier

. Makes broader approximations, producing more oranges
. Can take much more time to analyse the application.

PolySpace is most effective when it is used as early as possible in the development process, i.e.
BEFORE any other form of testing.

When a small module (file, piece of code, package, whatever) is analysed using PolySpace, the focus
should be on the red and checks. Orange unproven checks at this stage are of a very useful
interest, as most of them deal with robustness of the application. They will change to red, or
green as the project progresses and more and more modules are integrated.

During the integration process, there might be a point where the code becomes so large (maybe 50000
lines of code or more) that the analysis of the whole project is not achievable within a reasonable
amount of time. Then there are two options.

. Stop the use of PolySpace at this stage (a lot of the benefits have been achieved already), or

. Analyse subsets of the code.

Release 2007a+ 215/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.5.3. By selecting a subset of code

If aproject is subdivided into logical sections by considering data flow, the total analysistime will be
considerably shorter than for the project considered in one pass. (See also: address clause, volatile , automatic

stubbing)

In such an application, there are two distinct concepts to consider:

» function entry-points. Function entry-points refer to the PolySpace execution model since they
are started concurrently, without any assumption regarding sequence or priority. They represent the
beginning of your call tree;

» dataentry-points. Regard linesin the code where data is acquired as "data entry points".

Consider the examples below.

Example 1

Procedure conpl ete_treatnent_based_on_x(input : integer) is
begi n

t housand of |ine of conputation...
end

Example 2

procedure nain is
begi n

X: = read_sensor();

y: = conpl ete_treat nent _based_on_x(x);
end
Example 3

REG STER 1: integer;
for REG STER 1 use at 16#1234abcd#,
procedure main is

begi n

x: = REGQ STER 1,

y: = conpl ete_treat nent _based_on_x(x);
end

In each case, the "x" variable is adata entry point and “y” isthe consequence of such an entry point. "y" may be
formatted data, due to a very complex manipulation of x.

Since x isvolatile, a probable consequence will be that y will contain all possible formatted data. An
approximation could be to completely remove the procedure complete treatment_based on x and let automatic

Release 2007a+ 216/292
Revision 4.2 vA

stubbing work: it will then assign afull range datato y directly.

-- renoved body of conplete treatnent based on X

procedure main is

begi n
X:
y:

end

.. -- Wwhat ever;
conpl ete_treatnent _based on _x(x); -- now stubbed!

Some consequences

(-) A dlight loss of precision ony. Verifier will now consider al possible values for y, including the formatted
ones that were present at the first analysis.

(+) A huge investigation of the code is not necessary to isolate a meaningful subset. Any application can be split
logically in thisway.

(+) No functional modules are |ost.
(+) Theresults will still be correct because there is no need to remove any thread affecting (change) shared data.
(+) The complexity of the code is considerably reduced.

(+) A high precision level (say O2) can be maintained.

Typical examples of removable components, accor ding to thelogic of the data:

» Error management modules. These modules often contain abig array of structuresthat are
accessed through an AP, but return only a Boolean value. By removing the API code and retaining
the prototype, the automatically generated stub will be assumed to return avalue in the range [-231,
2"31-1], which includes 1 and 0. The procedure will be considered to return all possible answers, just
like reality;

e Buffer management for mailboxes coming from missing code. Suppose an application reads a
huge buffer of 1024 char, and then usesit to populate 3 small arrays of data, using avery complicated
algorithm before passing it to the main module. If the buffer is excluded from the analysis and the
arrays are initialised with random values instead, then the analysis of the remaining code will just be
the same.

Related subjects:
6.2.5.3.1. Subdivide according to data-flow

6.2.5.3.2. Subdivide according to real-time char acteristics
6.2.5.3.3. Subdivide accor ding to files

Release 2007a+ 217/292
Revision 4.2 vA

PonSpace

TECHHOLOGIES
Previous Back to table of contents Next

6.2.5.3.1. Subdivide according to data-flow

Consider the following example.

Module A reads variables varl, var2, var3
And produces variables vard, var5, varb

varl gl Module A containing | 4 vard g Module B containing

more than one finction. maore than one function.
var? = Al o = Bl
VArS . - Var:
- _-:L_' - EE
= A3 > B3
1.'-3.1'3 —_— - ’i.'-El.i'IS —_— e

In this application, variables 1, 2 and 3 can vary between the following ranges

Varl Between 0 and 10
Var2 Between 1 and 100
Var3 Between -10 and 10

Specification of Module A:

Module A consists of an algorithm which interpolates between varl and var2. That algorithm uses var3 as an exponential
factor, so when varl is equal to O, the result in var4 is also equal to O.

Asaresult, var4, var5 and var6 are produced with the following specifications:

Ranges vard Between -60 and 110
varS Between 0 and 12
varé Between 0 and 100
Properties And a set of properties 1. If var2isequa to 0, than vard>var5>5.
between variables 2. If var3isgreater than 4, than vard<var5<12
3. ..

Subdivision in accordance with data flow allows modules A and B to be analysed separately.
 Awill usevariables 1, 2 and 3 initialised respectively to [0;10], [1;100] and [+10;10]

B will usevariables 4, 5 and 6 initialised respectively to [-60;110], [0;12] and [+10;10]

The conseguences

Release 2007a+ 218/292
Revision 4.2 vA

(-) A dlight loss of precision on the B module analysis, because now all combinations for variables 4, 5 and 6 are
considered:

* Itincludesall of the possible combinations.

* It asoincludesthose that would have been restricted by the A module analysis.
For instance. If the B module included the test
“If var2 isequal to 0, than var4>var5>5"
then the dead code on any subsequent “else” clause would not be detected.

(+) Anin depth investigation of the code is not necessary to isolate a meaningful subset. It meansthat alogical splitis
possible for any application, in accordance with the logic of the data

(+) Theresults remain valid (because there no need to remove (say) athread that will change shared data)
(+) The complexity of the code is reduced by a significant factor
(+) The maximum precision level can be retained.

Typical examples of removable components:

» Error management modules. A function has_an_error_already occurred might return TRUE or
FALSE. Such amodule may contain abig array of structures which are accessed through an API. The
removal of the API code with the retention of the prototype will result in the Verifier analysis producing a
stub which returns [-2731, 2*31-1]. Thisclearly includes 1 and O (yes and no). The procedure

has an_error_already occurred will therefore return all possible answers, just like the code would at
execution time.

» Buffer management for mailboxes coming from missing code. Suppose alarge buffer of 1024 char is
read, and the datais then collated into 3 small arrays of data using a very complicated algorithm. This data
is then given to a main module for treatment. For the Verifier analysis, the buffer can be removed and the 3
arraysinitialised with random values.

e Display modules.

Release 2007a+ 219/292
Revision 4.2 vA

y E{ HHOLOGIES
Previous Back to table of contents Next

6.2.5.3.2. Subdivide according to real-time characteristics

Another way of splitting an application is to isolate files which contain only a subset of tasks, and to analyse each
subset separately.

If an analysisisinitiated using only a few tasks, PolySpace Verifier will lose information regarding the
interaction between variables.

Suppose an application involvestasks T1 and T2, and variable x.

If T2 modifies x and T2 is scheduled to read it at a particular moment, subsequent operationsin T2 will be
impacted by the values of x.

As an example, consider that T1 can write either 10 or 12 into x and that T2 can both write 15 into x and read the
value of x. There are two ways to achieve a sound stand-alone analysis of T2.

e X could be declared as volatile in order to take into account all possible executions. Otherwise x
will take only itsinitial value or x variable will remain constant, and T2' s analysis will be a subset
of possible execution paths. Y ou might have precise results, but it will only include one scenario
among all possible states for the variable x.

e xcould beinitialised to the whole possible range [10;15], and then the T2’ entry-point called.
Thisisaccurateif x is calibration data.

Release 2007a+

220/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.5.3.3. Subdivide according to files

Simply extract a subset of files and perform an analysis either
e using entry-points, or

* by creating a“main” that calls randomly all functions that are not called by any other within this subset
of code.

This method may look too simple to be efficient but it can produce good results when the aimisto find red errors
and bugsin code.

Release 2007a+ 221/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.5.4. What are the benefits of these methods?

It may be desirable to split the code
. To reduce the analysis time for a particular precision mode

* Toreduce the number of oranges (see next two sections for details)

The problems subdivision may bring are that

e Orange checks can result from a lack of information regarding the relationship between
modules, tasks or variables

* Orange checks can result from using too wide a range of values for stubbed functions

Related subjects:
6.2.5.4.1. When the application isincomplete

6.2.5.4.2. Considering the effects of application code size

Release 2007a+ 222/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

6.2.5.4.1. When the application isincomplete

When the code consists of asmall subset of alarger project, alot of procedures will be automatically stubbed.
Thisis done according to the specification or prototype of the missing functions, and therefore PolySpace
assumes that all possible values for the parameter type can be returned.

Consider two 32 bit integers“a’ and “b”, which are initialised with their full range due to missing functions.
Here, & b would cause an overflow, because “a’ and “b” can be equal to 2*31. The number of incidences of these
“data set issue’ can be reduced by precise stubbing.

Now consider a procedure f which modifiesitsinput parameters “a’ and “b”, both of which are passed by
reference. Suppose that “a” might be modified to any value between 0 and 10, and “b” to any value between -10
and 10. In an automatically stubbed function, the combination a=10 and b=10 is possible even though it might not
be possible with the real function. This can introduce orange checksin a code snippet such as 1/(a*b - 100),
where the division would be

S0 - even where precise stubbing is used, analysing a small piece of application might

introduce extra orange checks. However, the net effect from reducing the complexity will be to
reduce the total number of orange checks.

» When using the default stubbing, the increase in the number of orange checks as the result of
this phenomenon tends to be more pronounced.

Release 2007a+ 223/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

6.2.5.4.2. Considering the effects of application code size

PolySpace Verifier can make approximations when computing the possible values of the variables, at any point in
the program. Such an approximation will always use a superset of the actual possible values.

For instance, in arelatively small application, PolySpace Verifier might retain very detailed information about the
data at a particular point in the code, so that for example the variable VAR can takethevalues{ -2; 1; 2; 10;
15;16;17;25}. If VAR isused to divide, the division is green (because O is not a possible value).

If the program being analyzed islarge, PolySpace Verifier would simplify the internal data representation by
using aless precise approximation, such as[-2; 2] U {10} U [15; 17] U {25} . Here, the same division appears
as an orange check.

If the complexity of the internal data becomes even greater later in the analysis, PolySpace Verifier might further
simplify the VAR rangeto (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings when the size of the program becomes
large.

Note that the amount of simplification applied to the data representations also depends on the required precision
level (OO0, O2), PolySpace Verifier will adjust the level of simplification, viz.:

* -00 and —quick: shorter computation time,
» -02: less orange warnings.

* -03: less orange warnings and bigger computation time.

Release 2007a+ 224/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7. Options description

Related subjects:
7.1. GENERAL

7.2. TARGET/COMPILER

7.3. COMPLIANCE WITH STANDARDS

7.4. POLYSPACE INNER SETTINGS

7.5. PRECISION

7.6. MULTITASKING (PolySpace Server only)
7.7.BATCH OPTIONS

7.8. COMPLETE EXAMPLES

Release 2007a+ 225/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.1. GENERAL

This section collates all options relating to the identification of the analysis, including the
destination directory for the results and sources.

Related subjects:
7.1.1. -prog program-name

7.1.2. -date date

7.1.3. -author author-name

7.1.4. -verif-version verif-version

7.1.5. -voa

7.1.6. -keep-all-files

7.1.7. -continue-with-red-error

7.1.8. -continue-with-existing-host

7.1.9. -allow-unsupported-linux

7.1.10. -sources " files' or -sour ces-list-file file name
7.1.11. -extensions-for -spec-files and -ada-include-dir
7.1.12. -results-dir directory

7.1.13. -pre-analysis-command file or " command"
7.1.14. -post-analysis-command file or " command"

Release 2007a+ 226/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

7.1.1. -prog program-name

This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Session Identifier.
Default:

Shell Script:polyspace

GUI:New_Project

Example shell script entry:
pol yspace-ada -prog nyApp ...

Release 2007a+ 227/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

7.1.2. -date date

This option specifies a date stamp for the analysis in dd/mm/yyyy format.
This information
is labelled in the GUI as the Date. The GUI also allows alternative default
date formats, via the Edit/Preferences window.
Default:

Day of launching the analysis

Example shell script entry:
pol yspace-ada -date "02/01/2002". ..

Release 2007a+ 228/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.1.3. -author author-name

This option is used to specify the name of the author of the
verification.
Default:

the name of the author is the result of the whoami command

Example shell script entry:
pol yspace-ada -aut hor "John Tester"

Release 2007a+

229/292
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

7.1.4. -verif-version verif-version

Specifies the version identifier of the verification. This option can be used to
identify different analyses. This information is identified in the GUI as the
Version.
Default:

1.0.

Example shell script entry:
pol yspace-ada -verif-version 1.3 ...

Release 2007a+ 230/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

7.1.5. -voa

When applied at launch time, this option enables the inspection of calculated domains for simple type
assignments (scalar or float).

A new category of checks - named VOA - is generated on ":" of some scalar assignments to give the
ranges. VOA checks are not available for volatile varlables.

Default:

Disabled by default

Note:

Depending on code optimisation, this check may not be present at all assignment locations
Example Shell Script Entry:
pol yspace-ada -voa ...

Release 2007a+

231/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.1.6. -keep-all-files

When this option is set, all intermediate results and associated working files
are retained. Consequently, it is possible to restart Verifier from the end of
any complete pass (provided the source code remains entirely unchanged). If
this option is not used, it is only possible to restart Verifier from scratch.

By default, intermediate results and associated working files are erased when
they are no longer needed by the Verifier.

Release 2007a+ 232/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.1.7. -continue-with-red-error

Note: This option may yield invalid results when used improperly.
Ordinarily, red errors (other than NTC) prevent PolySpace from continuing to the next integration pass.

This option allows PolySpace to continue even if one of these red errors is encountered. In most cases,
this will mean that the dynamic behavior of the code beyond the point where red errors are identified
will be undefined, unless the red code is actually inaccessible.

When using this option it is not rare to when opening some results, a strange red error is encountered.
it could be interesting to open results at level 1 (passl) to verify that some other red errors have not
been highlighted.

Default:

Verifier stops upon finding red errors.

Example shell script entry :

polyspace-ada -continue-with-red-error ...

Release 2007a+ 233/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.1.8. -continue-with-existing-host

When this option is set, the analysis will continue even if the system is under
specified or its configuration is not as preferred by PolySpace. Verified
system parameters include the amount of RAM, the amount of swap space,
and the ratio of RAM to swap.

Default:

Verifier stops when the host configuration is incorrect or the system is
under specified.

Example Shell Script Entry:
pol yspace-ada -conti nue-w th-exi sting-host

Release 2007a+

234/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents

7.1.9. -allow-unsupported-linux

This option specifies that PolySpace will be launched on an unsupported OS Linux distribution.

In such case a warning is displayed in he log file against possible incorrect behaviours:

E R I b b b S b b S I R I I R IR R S b b b b S b S R SR R I b S S b I b b b I SRR e

* k% * k% %
* k% V\ARNING * k% %
* k% * k% %
* Kk You are runni ng Pol ySpace Verifier on an kR
kK unsupported Linux distribution. It may |ead * ok
* Kk to incorrect behaviour of the product. Pl ease kR
kK note that no support will be available for * ok
* Kk this operating system kR
* k% * k% %

E R I S b b b b S R I I R b b b b S b S S SRR I b S S b b b b b b S I R

Default:
Disable

Example Shell Script Entry:
pol yspace- ada —al | ow unsupported-|inux ...

Release 2007a+
Revision 4.2 vA

235/292

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.1.10. -sources " files' or -sources-list-file file_ hame

-sources "filel[file2[...]]" (linux and solaris)

or

-sources "filel[,file2][, ...]]" (windows, linux and solaris)
or

-sources-list-file file_name

It gives the list of source files to be analyzed, double-quoted and separated by commas. The specified
files must have valid extensions:
(Ala)d(a|b|s) for Ada
Defaults:
sources/*.(Ala)d(a|b|s) for Ada
Examples under linux or solaris:
pol yspace-ada -sources "ny_directory/ nod*. ad[sb]"
Examples under windows:
pol yspace-ada -sources "spc/ nodl. ads, bod/ nod1. adb"

Using -sources-list-file in batch mode, the syntax of the file is the following:
* one file by line.

» file names are given with absolute or relative path. See -sources-list-file option.

Release 2007a+ 236/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.1.11. -extensions-for-spec-files and -ada-include-dir

The -extensions-for-specs-files option specifies the file extension for files "F" which will be analyzed to
get the type/variables names but which are not part of the -sources list.
It's like having a dictionary with only the list of words and their type (verb, noun, adj) without the
definition. These files will allow the product to know the name and the type, but not the values
(dictionary definitions).
The -ada-include-dir specifies the directory where the F files are located. However, the option can be
used several times and more than one directory can be specified
Note:
Both options must be used together.
Benefits:

- faster compilation on these packages in order to focus on the -sources packages

specifications and bodies

- full range for all constants defined in these packages: let's consider 1 package bodie B and

2 specifications S1 and S2
Usage examples using the graphical interface:
configuration 1:

- -sources contains B.ada and S1.ada

- -extensions-for-specs-files contains the *.ada filter

- -ada-include-dir contains the TEST folder and the TEST folder contains S2.ada
configuration 2:

- -sources contains B.ada, S1.ada, S2.ada

- Ifaconstant S2.C is used

o in configuration 1: its value will be its full range
o In configuration 2: its value will be the real constant value

Usage examples in shell entry-script mode:
pol yspace- deskt op- ada - sources "B. ada, S1. ada" -extensions-for-specs-files
"* ada" -ada-include-dir ./include_specs
pol yspace- deskt op- ada - sources sources/exanpl e. ad* -extensions-for-spec-
files "*.ad?" -ada-include-dir "sources"

Release 2007a+ 237/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.1.12. -results-dir directory

This option specifies the directory in which Verifier will write the results of
the analysis. Note that although relative directories may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration
file 1s to be copied using the "Save as" option.
Default:

Shell Script: The directory in which tool is launched.

From Graphical User Interface: C:\PolySpace Results

Example Shell Script Entry:
pol yspace-ada -results-dir RESULTS ...
export RESULTS=results "date +%d%B %1HYV YA
pol yspace-ada -results-dir “~pwd /$RESULTS ...

Release 2007a+ 238/292
Revision 4.2 vA

y E{ HHOLOGIES
Previous Back to table of contents Next

7.1.13. -pre-analysis-command file or " command"

When this option is used, the specified script file or command is run before the analysis phase on each
source file.

The command should be designed to process the standard output from source code and produce its
results in accordance with that standard output.

Default:

No command.

Example Shell Script Entry — file name:

To replace the keyword “Vol at i | e” by “I nport”, you can type the following command:

pol yspace-ada - pre-anal ysi s-conmand " pwd /repl ace_keywor ds

where replace_keywords is the following script :

#!/ bi n/ sh

sed "s/ Vol atile/lnport/g"

Example Shell Command Entry:

This example performs the same function as that illustrated above, but specifies the command line
directly:

pol ysypace- ada - pre-anal ysi s-conmand "sed s/ Vol atil e/l nport/g"

Release 2007a+ 239/292
Revision 4.2 vA

y E{ HHOLOGIES
Previous Back to table of contents Next

7.1.14. -post-analysis-command file or " command"

When this option is used, the specified script file or command is executed once the analysis has
completed.

The script or command is executed in the results directory of the analysis.

Execution occurs after the last part of the analysis. The last part of is determined by the —to option.
Note that depending of the architecture used, notably when using remote launcher, the script can be

executed on the client side or the server side.

Default:
No command.

Example Shell Script Entry — file name:
This example shows how to send an email to tip the client side off that his analysis has been ended.
This example supposes that the mai | x command is available on the machine. So the command looks
like:
pol yspace- ada - post-anal ysi s-conmand “pwd /end_enail . sh
where end_emai | s. sh is the following script:
#!'/ bi n/ sh
echo "analysis finished” | mailx —s ”Pol ySpace Anal ysis ended”
“nane@onni n. cont

Example Shell Command Entry:

This example performs the same function as that illustrated above, but specifies the command line
directly:

pol yspace- ada - post-anal ysi s-conmand "nail x —s \” Pol ySpace Anal ysis ended\”
\ “nane@omai n. com """

Release 2007a+ 240/292
Revision 4.2 vA

file:///E|/PolySpace/Documentation/HTML_Ada/Launch_Polyspace_remotely_ada.htm
mailto:name@domain.com
mailto:name@domain.com

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.2. TARGET/COMPILER

This section allows details of the target processor and operating system to be specified.

Related subjects:
7.2.1. -tar get tar get-name

7.2.2. -OS-target OperatingSystemT ar get

Release 2007a+ 241/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.2.1. -target target-name

Specify the target processor type. This option helps PolySpace to know the size of fundamental data
types and whether your machine is big or little endian.

Possible values are: sparc, nb68k, 1750a, powerpc64bit, powerpc32bit and i 386.
Default:

sparc

Example:

polyspace-ada -target m68k ...

Release 2007a+ 242/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.2.2. -OStarget OperatingSystemT ar get

It specifies the Operating system target for Standard Libraries compatibility for PolySpace stubs. This
option allows PolySpace to support implementation specific declarations contained in the Ada standard
libraries.

Possible values are ‘gnat ', 'gr eenhi | | s' and 'no- pr edef i ned- CS.

Default:

no- pr edef i ned- GS. Note that this option allows gnat includes.

Note:

Only the 'gnat’ include files are provided with PolySpace (see the “adai ncl ude” folder in the
installation directory). Projects developed for use with other operating systems may be analyzed by
using the corresponding include files for that OS. For instance, in order to analyse a ‘greenhills’ project
it is necessary to use option —ada-include-dir <path_to_the greenhills_include_folder>. Note that this
set of includes is not delivered with the product.

Example shell script entry:

pol yspace-ada - OS-target gnat

pol yspace-ada -OS-target greenhills -ada-include-dir /conplete path_to/
greenhills_includes ...

Release 2007a+ 243/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3. COMPLIANCE WITH STANDARDS

Related subjects:
7.3.1. -storage-unit number

7.3.2. -base-type-directly-visible
7.3.3. Permissiveness/Strictness

Release 2007a+ 244/292
Revision 4.2 vA

Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

7.3.1. -storage-unit number

Release 2007a+
Revision 4.2 vA

Allows to choose the value of the constant SY STEM.Storage Unit. This constant is
defined in the SY STEM package. If this option is set, a strictly positive number,
the value found in the SY STEM package will be ignored
Default
The default value of the constant is 8 except for the target 1750a
which is 16.
Example
-- Definition of record type
type RECis record
A : integer;
B : bool ean;
end REC,
-- Representation clause of this record
for REC use record
A at 0 range 0 .. 31;
Bat 1 range 0 .. 31;
end record,;
With atarget defining 8 as storage unit value, the error "A overlaps B" appears
because the value of SY STEM .Storage Unit is 8. In the example, this value need to
be 32. The use of -storage-unit 32, removes the error message and allowsto
compute the size of REC.

245/292

PolyS pace

Previous Back to table of contents Next

7.3.2. -base-type-directly-visible

Standard Ada is ambiguous on visibility of comparison and equality operators (=,/=,<=,=>, >, <). This
option allows removing some ambiguities.
In case of compilation error concerning visibility of comparison and equality operators, such as:
. "ambiguous expression (cannot resolve "<=")
. "operator for type "X" defined at ./exemple.ada:2 is not directly visible use clause would make
operation legal
Setting the option can make the code legal”
Default:
. Itis the type of the operand that matters to determine whether the operator is visible
. For overloaded functions, potentially use visible means use visible for sure

Ada example:
Package A is

type Tl is new Integer range O .. 100; -- line 1
end A

-- Oher file:exanplel. adb
with A use A

Package B is

subtype T2 is T1 range 2..80;
end B;

Package OTHER | ABC ADA 4 is
procedure Mi n;
end OTHER | ABC_ADA 4,

wth B; use B;

Package body OTHER | ABC ADA 4 is
X, Y T2:

procedure Main is

begi n

nul | ;

pragma Assert (TRUE);
end Min;

begi n

X =12

Y .= 10;

if X>Ythen -- line 21
pragma Assert (True);

nul | ;

Release 2007a+ 246/292
Revision 4.2 vA

end if;
end OTHER | ABC _ADA 4,
Without the option, an error message appears:
. Verifier found an error in ./examplel.adb:21:07: operator for type "T1" defined at ./examplel.
adb:1 is not directly visible
. Verifier found an error in ./examplel.adb:21:07: use clause would make operation legal
With the option, there is no error message.

Shell script command:
pol yspace- ada -base-type-directly-visible ...

Release 2007a+ 247/292
Revision 4.2 vA

PolyS pace

Previous Back to table of contents Next

7.3.3. Permissiveness/Strictness

Analysis mode can be chosen between two options: -permissive and -strict.

When any of this two options are selected the “customize” allows to select following options
independently: -no-automatic-stubbing, -continue-with-in-out-niv and —continue-with-all-niv.

Related subjects:
7.3.3.1. -permissive

7.3.3.2. -continue-with-in-out-niv
7.3.3.3. -strict

7.3.3.4. -no-automatic-stubbing
7.3.3.5. -continue-with-all-niv

Release 2007a+ 248/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.3.1. -permissive

Permissive mode of PolySpace. Equivalent to -continue-with-in-out-niv and —continue-with-red-error.

Release 2007a+ 249/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.3.2. -continue-with-in-out-niv

Ada Standard imposes that in/out parameters of a procedure must be initialized. With this option, such
a variable is still detected as a red NIV but the following code won't be unreachable and this red error
won't have any impact on the analysis. This option may be used with -continue-with-red-error.

Default:
If a variable has not been initialized AND is passed to a procedure as an in/out parameter,
PolySpace indicates a red NIV and the rest of code is grey (dead code).

Example:

procedure test(x : in out Integer) is

begi n
x = 10;

end
procedure nain is

T : integer;

begi n

test(T); --red NNV on T with or without the option

T:=T+ 1, -- grey code on this line by default, green with -conti nue-
W th-in-out-niv

end Main;

Note:
If some infout NIV are detected (in level 1 for instance), the analysis will stop at the end of the Software

Safety level 1, as for any other red error detection. In order for the analysis to continue (in level 2, 3, 4
in this case), the user must set the option -continue-with-red-error.

Release 2007a+ 250/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.3.3. -strict

Strict mode of PolySpace.
In Ada, equivalent to -no-automatic-stubbing

Release 2007a+ 251/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.3.3.4. -no-automatic-stubbing

Missing body of procedures or functions (functions and procedures that are declared but not defined)
cause PolySpace to stop.
Defaults:
All procedures and functions are stubbed automatically according to their specification. The rules are
the following:
The generated stub is the most general possible body derived from its prototype.
- Implicit and explicit tasks cannot be stubbed.
- The main procedure cannot be stubbed.
- The generated stubs can not have any side effects on global variables. If a function with global
side effects must be stubbed, it must be done by hand.
Benefits:
The user may want to use this option for several reasons
* he wants to make sure the entire code is provided: this can be the case when analyzing a
large piece of code. When the analysis stops, it means the code is not complete: it will avoid
the user surprises to see a code with stubs instead of the original code he was expecting
* he wants to write stubs himself to increase the selectivity and speed of the analysis.

Example:
pol yspace-ada -no-automati c-stubbing -main ...

Release 2007a+ 252/292

Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.3.3.5. -continue-with-all-niv

Detect all non initialized variables (NIV). Without this option, Verification stops after the first red NIV.
Warning: Precision loss when using this option. It should only be set for the 1st run of a project. This
option may be used with -continue-with-red-error.

Default:

If a variable has not been initialized, PolySpace indicates a red NIV and the rest of the procedure is
grey (dead code). All remaining checks in the procedure are grey.

Example:

This example contains 3 red NIV: by default, only the first one can be detected. With the -continue-with-all-niv
option, all 3 will be detected at once, at the end of Level 1 analysis.

procedure Main is

I, T, No: I|nteger;

begi n
if (N =0) -- red NIV, with or without the option
t hen
| :=1/1; -- grey code by default, red NIV with the option
end if;
If (T =0) -- grey code by default, red NIV with the option
t hen
| = 12312409 /120;
end if;
end Mi n;

Not e: If some NIV are detected (in level 1 for instance), the analysis will stop at the end of the Software Safety
level 1, as for any other red error detection. In order for the analysis to continue (in level 2, 3, 4 in this case), the
user must set the option -continue-with-red-error.

Release 2007a+ 253/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4. POLYSPACE INNER SETTINGS

Related subjects:
7.4.1. -main main_subprogram name

7.4.2. -main-gener ator
7.4.3. Stubbing

7.4.4. Assumptions
7.4.5. Others

Release 2007a+ 254/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4.1. -main main_subprogram_name

The option specifies the qualified name of the main subprogram. This procedure will be analyzed after
package elaboration, and before tasks in case of a multitask application or in case of the -entry-points

usage.
Note:

this option is exclusive with -main-generator.

Example:
pol yspace-ada -mai n mai npackage.init

Release 2007a+ 255/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

7.4.2. -main-gener ator

The -main-generator is exclusive with -main option.

The -main-generator option will create automatically a procedure which calls every non called
procedure within the code, avoiding for instance to create manually a main.

Notes for PolySpace Destkop and PolySpace Verifier:

For PolySpace Desktop: the -main-generator option is set by default and the -main option can replace it
if activated

For PolySpace Verifier: the -main option is set by default and the -main-generator option can replace it
if activated

Example shell script entry:

pol yspace- ada - mai n- gener at or

pol yspace-desktop-ada ... (inplicit -main-generator active)

pol yspace- deskt op-ada -main myPack.main ... (inplicit -main-generator

cancel ed by the usage of -main)

Release 2007a+ 256/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4.3. Stubbing

Related subjects:
7.4.3.1. -import-are-not-volatile

7.4.3.2. -export-are-not-volatile
7.4.3.3. -init-stubbing-var s-random
7.4.3.4. -init-stubbing-var s-zer o-or -random

Release 2007a+ 257/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.4.3.1. -import-are-not-volatile

If avariable has a pragmaimport(C|ASM|other, my_variable), it's then considered
asvolatile by PolySpace. With this option, they are considered as regular variables.
Default

Imported variable are volatile

Example
pol yspace-ada -inport-are-not-volatile -main ...

Release 2007a+ 258/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.4.3.2. -export-are-not-volatile

If avariable has a pragma export(C|ASM|other, my_variable), it's then considered
asvolatile by PolySpace. With this option, they are considered as regular variables.
Default

Exported variable are volatile

Example
pol yspace- ada -export-are-not-volatile

Release 2007a+ 259/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4.3.3. -init-stubbing-var s-random

Force initialization of uninitialized global variables to a random value.
Default:
Unitialized global variables give warnings or errors, depending on the context.

Example:
pol yspace-ada -init-stubbing-vars-random-nain ...

Release 2007a+ 260/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4.3.4. -init-stubbing-var s-zer o-or -random

Initialize uninitialized globals variables:
. with zero if the type contains zero,
. with random otherwise
Default:
Unitialized global variables give warnings or errors, depending on the context.

Example:
pol yspace-ada -init-stubbing-vars-zero-or-random-nain ...

Release 2007a+ 261/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4.4. Assumptions

Related subjects:
7.4.4.1. -ignor e-float-rounding

7.4.4.2. -known-NTC procl],proc?,...]]

Release 2007a+ 262/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.4.4.1. -ignore-float-rounding

Without this option, PolySpace rounds floats according to the IEEE 754 standard: simple

precision on 32-bits targets and double precision on target which define double as 64-bits.
With the option, exact computation is performed.

Default:

IEEE 754 rounding under 32 bits and 64 bits.

Example Shell Script Entry :
pol yspace-ada -ignore-float-rounding ...

Release 2007a+ 263/292
Revision 4.2 vA

y E{ HHOLOGIES
Previous Back to table of contents Next

7.4.4.2. -known-NTC procl[,proc2|,...]]

After a few analyses, you may discover that a few functions "never
terminate". Some functions such as tasks and threads contain infinite loops by
design, while functions that exit the program such as kill _task , exit or
Terminate _Thread are often stubbed by means of an infinite loop. If these
functions are used very often or if the results are for presentation to a third
party, it may be desirable to filter all NTC of that kind in the Viewer.

This option is provided to allow that filtering to be applied. All NTC
specified at launch will appear in the viewer in the known-NTC category, and
filtering will be possible.

Default :

All checks for deliberate Non Terminating Calls appear as red errors, listed
in the same category as any problem NTC checks.

Example Shell Script Entry :
pol yspace-ada -known-NTC "kill task,exit"
pol yspace- ada - known- NTC "Exit, Term nat e_Thr ead"

Release 2007a+ 264/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.4.5. Others

Related subjects:
7.4.5.1. -orange-analyzer

7.4.5.2. -extra-flags option-extra-flag
7.4.5.3. -ada95-extr a-flags extra-flag (Ada95 only)

Release 2007a+ 265/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.4.5.1. -orange-analyzer

The option requests the computation for each orange check of necessary failure conditions expressed
as constraints on variables values that hold when the orange check is red at runtime.
Message format is the following:
Orange check description
If <(the orange check is red)> then <(condition to have this check in a red color)>
This option is not compatible with options -continue-with-in-out-niv and -continue-with-all-niv.
Example:
On the following example you could have this kind of message associated to an orange OVFL on the +
operator:
Var := lanba + z;
War ni ng: scal ar overflow may overfl ow on [conversion fromint32 range ...To
I nt 32 range 1260 ...0]
I f <OVFL> is red then (1240 <= z <= 12)

Default:

Disabled by default

Script usage Example:
polyspace-ada -orange-analyzer ...

Release 2007a+ 266/292
Revision 4.2 vA

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.4.5.2. -extra-flags option-extra-flag

This option specifies an expert option to be added to the analyzer. Each word
of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by PolySpace Support as necessary for your
analyses.

Default:

No extra flags.

Example Shell Script Entry:

pol yspace-ada -extra-flags -paraml -extra-flags -paran? \
-extra-flags 10 ...

Release 2007a+

267/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

7.4.5.3. -ada95-extra-flags extra-flag (Ada95 only)

This option specifies an expert option to be added to the analysis. Each word of the option (even the
parameters) must be preceded by —ada95-extra-flags.

These flags will be given to you by PolySpace Support as necessary for your analyses.
Default:

No extra fl ags.

Example Shell Script Entry:
pol yspace- ada —ada95-extra-flags -parant...

Release 2007a+

268/292
Revision 4.2 vA

Previous

PonSpace

TECHHNOLOGIES
Back to table of contents

7.5. PRECISION

Related subjects:

7.5.1.

-from verification-phase

7.5.2.

-to verification-phase

7.5.3.

-0(0-3)

7.5.4.

-modules-precision mod1:0(0-3)[,mod2:0(0-3)[,...]]

7.5.5.

-arr ay-expansion-size number

7.5.6.

-path-sensitivity-delta number

7.5.1.

-variables-to-expand var 1] ,var 2[,...]]

7.5.8.

-variable-expansion-depth number

Release 2007a+
Revision 4.2 vA

269/292

Previous

PonSpace

TECHNOLOGIES

Back to table of contents Next

7.5.1. -from verification-phase

Release 2007a+
Revision 4.2 vA

This option specifies the verification phase to start from. It can only be used
on an existing analysis, possibly to elaborate on the results that you have
already obtained.

For example, if an analysis has been completed -to passl, PolySpace can be
restarted -frompass1 and hence save on analysis time.

The option is usually used in an analysis after one run with the -to option,
although it can also be used to recover after power failure.

Possible values are as described in the -to verification-phase section, with the
addition of the scratch option.

Notes:

- Unless the scratch option is used, this option can be used only if the
previous analysis was launched using the option -keep-all-files.

- This option cannot be used if you modify the source code between analyses.
Default :

scratch

Example Shell Script Entry :
pol yspace-ada -fromc-to-il

270/292

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.5.2. -to verification-phase

Specifies the verification phase after which the Verifier will stop.
Benefits:
This option allows you to have a higher selectivity, and therefore to find more bugs within the
code.
- A higher integration level contributes to a higher selectivity rate, leading to "finding more
bugs" with a given code.
- A higher integration level also means higher analysis time
Possible values:
* normalize
e compile
* pass0O or CDFA or "Control and Data Flow Analysis"
* passl or "Software Safety Analysis level 1"
* pass2 or "Software Safety Analysis level 2"
e pass3 or "Software Safety Analysis level 3"
* pass4 or "Software Safety Analysis level 4"
e other
Note:
If you use -to other then PolySpace will continue until you stop it manually (viaki | | -rte-
ker nel) or stops until it has reached pass20.
Default:
pass4
Example Shell Script Entry:
pol yspace-ada -to "Software Safety Analysis level 3". . .
pol yspace-ada -to passO ...

Release 2007a+ 271/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.5.3. -0(0-3)

This option specifies the precision level to be used. It provides higher selectivity in exchange for more
analysis time, therefore making results review more efficient and hence making bugs in the code easier
to isolate. It does so by specifying the algorithms used to model the program state space during
analysis.

It is recommended that analyses should begin with the -quick option. Red errors and grey code can
then be addressed before re-launching Verifier using this option, applying a precision level as
described below.

Benefits:
- A higher precision level contributes to a higher selectivity rate, making results review more efficient
and hence making bugs in the code easier to isolate.
- A higher precision level also means higher analysis time
-O0 corresponds to static interval analysis.
-O1 corresponds to complex polyhedron model of domain values.
-O2 corresponds to more complex algorithms to closely model domain values (a mixed
approach with integer lattices and complex polyhedrons).
-O3 is only suitable for code smaller than 1000 lines of code. For such codes, the resulting
selectivity might reach high values such as 98%, resulting in a very long analysis time, such as
an hour per 1000 lines of code. In Ada, the option set —path-sensitivity-delta to the value Y+5,
where Y is the value already set by the option.
Default:
-02
Example Shell Script Entry:
polyspace-ada -O1 -to pass4 ...

Release 2007a+ 272/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.5.4. -modules-precision mod1:0(0-3)[,mod2:O(0-3)[,...]]

This option is used to specify the list of .c files to be analyzed with a different
precision from that specified generally -O(0..3) for this analysis.

In batch mode, each specified module is followed by a colon and the desired
precision level for it. Any number of modules can be specified in this way, to
form a comma-separated list with no spaces.

Default:

All modules are treated with the same precision.

Example Shell Script Entry:
pol yspace-ada -O1 \
- nmodul es- preci si on nmyMat h: O2, nyText : O1,

Release 2007a+ 273/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

7.5.5. -array-expansion-size number

This option forces PolySpace to analyze each cell of global variable arrays having length less than or
equal to number as a separate variable.
Warning:
Increasing the number of global variables to be analyzed will have an impact on the analysis time. This
option has an impact only on the Global Data Dictionary results.
Default:
The default value is 3.
Example:
pol yspace-ada -QOl -array-expansion-size 8 -nain ...

Release 2007a+ 274/292
Revision 4.2 vA

Previous

Release 2007a+
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Back to table of contents Next

7.5.6. -path-sensitivity-delta number

This option is used to improve interprocedural analysis precision within a
particular pass (see -to passl, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer analysis time.

Consider two analyses, one with this option set to 1 (with), and one without
this option (without)

- alevel 1 analysis in (with) (pass1) will provide results equivalent to level 1
or 2 in the (without) analysis

- alevel 1 analysis in (with) can last x times more than a cumulated level 1
+2 analysis from (without). "x" might be exponential.

- the same applies to level 2 in (with) equivalent to level 3 or 4 in (without),
with potentially exponential analysis time for (a)
Gainsusing the option

(+) highest selectivity obtained in level 2. no need to wait until level 4

(-) This parameter increases exponentially the analysis time and might be
even bigger than a cumulated analysis in level 1+2+3+4

(-) This option can only be used with less than 1000 lines of code
Default:

0
Example Shell Script Entry:

polyspace-ada -path-sensitivity-delta 1 ...

275/292

PonSpace

TECHHNOLOGIES
Previous Back to table of contents Next

7.5.7. -variables-to-expand varl[,var2[,...]]

Specifies aggregate variables (record, ...) that will be split into independent
variables for the purpose of analysis.
This option has an impact on the Global Data Dictionary results.
Use with -variable-expansi on-depth.
Default:
Depending on complexity issues, fields in records may not beindividually
analyzed.
Example:
pol yspace- ada -vari abl es-to-expand pkg.recl, pkg2.recF \
-vari abl e- expansi on-depth 4 -main ...

Release 2007a+ 276/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES
Previous Back to table of contents Next

7.5.8. -variable-expansion-depth number

Indicate the maximum depth for expansion of variables specified by the -variables-

to-expand option. So, it is mandatory first to specify which variables need to be
expanded first.

Warning:

Increasing the number of global variables to be analyzed will have an impact on the

analysistime. This option has an impact only on the Global Data Dictionary
results.

Default:
There is no defauilt.
Example:
Consider the following code :
Package foo is
Type Internal is

Record
Fieldl : Integer;
Fieldll : Integer;
End Record ;
Type External is
Record
Data : Interna
Fiel dE : Integer;
End Record ;
nmyVar : Externa
End f oo;

Effects of different expansion depthsif you use -variables-to-expand foo.myVar :

-variable-expansion-depth 1 : the concurrent access analysis is made on foo.
myVar.FieldE and foo.myVar.Data which means that if each accesson Datais
protected by critical section but FieldE is not protected, then Data will be flagged
as protected (green entry in the Global Data Dictionary) and FieldE as not
protected (orange entry)

-variable-expansion-depth 2 : the analysis is made on foo.myVar.FieldE, foo.
myVar.Data.Fieldl and foo.myVar.Data.Fieldll : each variable will be flagged
independently.
foo.myVar isflagged as shared if any of itsfield are shared; it is flagged as non-
protected if any of itsfields are not protected.

Release 2007a+

277/292
Revision 4.2 vA

Example (the previous one, implemented):
pol yspace- ada -vari abl es-t o- expand pakcage_f oo. nyVar \
-vari abl e- expansi on-depth 1 -main ...

Release 2007a+ 278/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.6. MULTITASKING (PolySpace Server only)

Concurrency options are not compatible with -main-generator option.

Related subjects:
7.6.1. -entry-pointsstri],str2[,...]]

7.6.2. -critical-section-[begin or end] " procl.csl|,proc2:cs2]"
7.6.3. -tempor al-exclusions-file file name

Release 2007a+ 279/292
Revision 4.2 vA

y Q{ HHOLOGIES
Previous Back to table of contents Next

7.6.1. -entry-points strl[,str2][,...]]

This option is used to specify the tasks/entry points to be analysed by PolySpace, using a Comma-
separated list with no spaces.

These entry points must not take parameters. If the task entry points are functions with parameters
they should be encapsulated in functions with no parameters, with parameters passed through global
variables instead.

Moreover, when tasks are declared with Ada task keyword, PolySpace takes them into account
automatically.

Example Shell Script Entry:
pol yspace-ada -entry-points procl, proc2, proc3 ...

Release 2007a+ 280/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.6.2. -critical-section-[begin or end] "procl:csl[,proc2.cs2]"
-critical -section-begin "procl:csl[, proc2:cs2]"

and
-critical -section-end "proc3:csl[, proc4:cs2]"

These options specify the procedures beginning and ending critical sections, respectively. Each uses a
list enclosed within double speech marks, with list entries separated by commas, and no spaces.
Entries in the lists take the form of the procedure name followed by the name of the critical section, with
a colon separating them.
These critical sections can be used to model protection of shared resources, or to model interruption
enabling and disabling.
Default:

no critical sections.
Example Shell Script Entry:
pol yspace-ada -critical -section-begin "start_ny_senaphore:cs" \
-critical -section-end "end _ny_semaphore: cs”

Release 2007a+ 281/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.6.3. -tempor al-exclusions-file file_name

This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

* one line for each group of temporally excluded tasks,

* on each line, tasks are separated by spaces.

Default :

No temporal exclusions.

Example Task Specification file

File named 'exclusions' (say) in the 'sources' directory and containing:
taskl groupl task2_groupl

taskl group2 task2 group2 task3 group2
Example Shell Script Entry :

pol yspace- ada -tenporal -excl usions-file sources/exclusions \
-entry-points taskl groupl,task2 groupl,taskl group2,\
t ask2_group2, task3_group2 ...

Release 2007a+ 282/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.7. BATCH OPTIONS

Related subjects:
7.7.1. -server server name or _ip[:port number]

7.7.2. -h[elp]
7.7.3.-v | -version
7.7.4. -sour ces-list-file file name

Release 2007a+ 283/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.7.1. -server server_name_or_ip[:port_number]

Using pol yspace-renot e[- deskt op] -[ada] [—-server [nanme or |P address][: <port
nunber >]] allows to send analysis to a specific or referenced PolySpace Queue manager server.
Note that If the option —ser ver is not specified, the default server referenced in the Pol ySpace-
Launcher . prf configuration file will be used as server.

When a —ser ver option is associated to the batch launching command, the name or IP address and a
port number need to be specified. If the port number does not exist, the 12427 value will be used by
default.

Note also that polyspace-remote- accepts all other options.

Option Example Shell Script Entry:
pol yspace-renot e- deskt op- ada —server 192.168. 1. 124: 12400 ...

pol yspace-renpt e- ada ...
pol yspace-renot e-ada —server Bergeron ...

Release 2007a+ 284/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.7.2. -h[elp]

Display in the shell window a simple help in a textual format giving information on all options.

Example Shell Script Entry:
pol yspace-ada —h

Release 2007a+ 285/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.7.3.-v | -version

Display the PolySpace version number.
Example Shell Script Entry:
pol yspace- ada —v
It will show a result similar to:
Pol ySpace r2007a+
Copyright (c) 1999-2007 Pol ySpace Technol ogi es

Release 2007a+ 286/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents

7.7.4. -sour ces-list-file file_name

This option is only available in batch mode. The syntax of file_name is the following:

- One file per line.
- Each file name includes its absolute or relative path.

Example Shell Script Entry for -sour ces-list-file:
pol yspace-ada -sources-list-file "C \Analysis\files.txt"
pol yspace-ada -sources-list-file "files.txt"

Release 2007a+
Revision 4.2 vA

287/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

7.8. COMPLETE EXAMPLES

Simple Ada example

pol yspace- ada \

-main a_project.root_procedure \

-prog nyProject \

-0\

-sources directory/*.ad[bs] \

-nodul es-precision sri:Q2,types: Q0
HDCA_Server
An Ada example. Notethat we try to minimize analysistimein going to pass2 and OO. Note also
thelist of files(no spacesin that filelist!).

pol yspace- ada \

-prog HDCA Server \

-mai n hdca_mai n. HDCA Server \

-Q0 \

-fromscratch -to pass2 \

-keep-all-files \

-no-aut onati c- st ubbi ng \

-continue-with-red-error \

-resul ts-dir RESULTS \

-sources \
$wor ki ng_versi on/ hdca/ cl ock_and_dat e. ada, \
$wor ki ng_ver si on/ hdca/ cpu_usage. ada, \
$wor ki ng_ver si on/ hdca/ excepti on_| og. ada, \
$wor ki ng_ver si on/ hdca/ hdca_mai n. ada, \
$wor ki ng_ver si on/ screen/ noni tor. ada, \
$wor ki ng_versi on/ common/utilities/|letter_box. ada,\
$wor ki ng_version/ common/ utilities/library_functions. ada,\
$wor ki ng_version/ common/utilities/catal og_tools. ada,\
$wor ki ng_version/ comon/utilities/configuration.ada,)\
$wor ki ng_versi on/ common/ utilities/converting. ads\
$wor ki ng_ver si on/ common/ utilities/converting.adb
airplane2
An Ada example with tasks.

pol yspace- ada \

-target nB68k \

Release 2007a+ 288/292
Revision 4.2 vA

-entry-points Wngs.w ngSuper Vi sor, Tail.tail Super Vi sor, \
Rudder . r udder Super Vi sor \
-to pass2 \
-from scratch \
-prog airplane2 \
-0\
-results-dir ~pwd /RESULTS 14 08 \
-mai n main. pst_mai n
high_speed_train
An Ada example.
pol yspace- ada \
-target sparc \
-from scratch \
-array-expansi on-size 1\
-sources "sources/*.[aAl*[a-zA-Z]" \
-prog high _speed train \
-0\
-keep-all-files \
-resul ts-dir RESULTS \
-mai n root _package. start

Release 2007a+ 289/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next

8. Appendix

Related subjects:
8.1. Glossary

8.2. What is static verification?

Release 2007a+ 290/292
Revision 4.2 vA

PonSpace

TECHNOLOGIES

Previous Back to table of contents Next
8.1. Glossary

Analysis In order to use a PolySpace tool, the code is prepared and an analysis is launched which is turn produces results for review.

Atomic In computer programming, atomic describes a unitary action or object that is essentially indivisible, unchangeable, whole, and

irreducible.

Atomicity In a transaction involving two or more discrete pieces of information, either all of the pieces are committed or none are.

Batch mode Execution of PolySpace from the command line, rather than via the launcher Graphical User Interface.

Category One of four types of orange check: potential bug, inconclusive check, data set issue and basic imprecision

Certain error See red error

Check Test performed by PolySpace during analysis, coloured red, orange, green or grey in the viewer

Dead code Code which is inaccessible at execution time under all circumstances, due to the logic of the software executed before it.

Development Process

Development process used within a company to progress through the software development lifecycle.

Green check

Check found to be confirmed as error free

Grey code

Dead code

Imprecision

Approximations made during PolySpace analysis, so that data values possible at execution time are represented by supersets
including those values

Orange warning

Check found to represent a possible error, which may be revealed on further investigation.

PolySpace Approach

The manner of use of PolySpace to achieve a particular goal, with reference to a collection of techniques and guiding principles.

Precision

An analysis which includes few inconclusive orange checks is said to be precise

Progress text

Output from PolySpace during analysis to indicate what proportion of the analysis has been completed. Could be considered as
a “textual progress bar”.

Red error Check found to represent a definite error

Review Inspection of the results produced by a PolySpace analysis, using the Viewer.

Scaling option Option applied when an application submitted to PolySpace Verifier proves to be bigger or more complex than is practical.
Selectivity The ratio of (green + + red) / (total amount of checks)

Unreachable code Dead code

Release 2007a+
Revision 4.2 vA

291/292

PonSpace

TECHNOLOGIES

Previous Back to table of contents

8.2. What is static verification?

Static Verification isabroad term, and is applicable to any tool which derives dynamic properties of a program
without actually executing it. Static Verification differs significantly from other techniques, such as run-time
debugging, in that the analysisit providesis not based on a given test case or set of test cases. The dynamic
properties obtained in the PolySpace analysis are true for all executions of the software.

Most Static Verification tools only provide an analysis of the complexity of the software, in a search for
constructs which may be potentially dangerous.

PolySpace provides deep-level analysisidentifying almost all run-time errors and possible access conflicts on
global shared data.

The ideaisto use an approximation of the software under analysis, using safe and representative approximations
of software operations and data.

An exampleis given below:

for (i=0; 1<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable 'i' never overflows the range of 'tab’ atraditional approach would be to enumerate each
possible value of 'i'. One thousand checks would be needed.

Using the static verification approach, the variable 'i* is modelled by its variation domain. For instance the model
of 'i"isthat it belongs to the [0..999] static interval. (Depending on the complexity of the data, convex
polyhedrons, integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance, the information that 'i' is incremented by
one every cycleintheloop islost. However the important fact is that thisinformation is not required to ensure
that no range error will occur; it is only necessary to prove that the variation domain of 'i' is smaller than the range
of 'tab'’. Only one check is required to establish that — and hence the gain in efficiency compared to traditional
approaches.

Static code verification has an exact solution but it is generally not practical, asit would in general require the
enumeration of all possible test cases. As aresult, approximation isrequired if a usable tool isto result.

Exhaustiveness

Nothing islost in terms of exhaustiveness. The reason is that PolySpace works by performing upper
approximations. In other words, the computed variation domain of any program variable is always a superset of
its actual variation domain. The direct consequence is that no run time error (RTE) item to be checked can be
missed by PolySpace.

Release 2007a+ 292/292
Revision 4.2 vA

	Local Disk
	PolySpace for Ada Documentation
	Table of contents
	1. PolySpace documentation set
	2. Getting started
	2.1. General Requirements
	2.2. Step 1: PolySpace Client - Setting up and launching an analysis of a single Ada file
	2.2.1. Analysis prerequisites
	2.2.2. Setting up a PolySpace Client analysis
	2.2.3. PolySpace Client: running the analysis
	2.2.3.1. Parsing errors during preliminary PolySpace analysis stages
	2.2.3.2. Progression of the analysis
	2.2.3.3. End of the analysis

	2.3. Step 2: PolySpace Viewer - Exploration of results
	2.3.1. Modes of operation
	2.3.2. Downlaod results into the Viewer
	2.3.3. Analyzing of PolySpace results in "Expert" mode (“example.adb”)
	2.3.3.1. Procedural entities view (RTE View)
	2.3.3.2. Colours in the Source code view
	2.3.3.3. More examples of run-time errors
	2.3.3.4. Advanced results exploration
	2.3.3.5. Miscellaneous

	2.3.4. Methodological asssitant
	2.3.4.1. Assistant dashboard
	2.3.4.2. Choose a methodological assistant

	2.3.5. Report Generation

	2.4. Launch PolySpace Remotely
	2.4.1. Steps of Launching
	2.4.2. Management of PolySpace analysis in remote: the PolySpace Spooler
	2.4.3. Batch commands
	2.4.4. Share analyses between accounts

	2.5. Summary

	3. Working with analysis setup
	3.1. Compile errors
	3.1.1. OS and target issues
	3.1.2. Unit analysis

	3.2. Stubbing errors
	3.2.1. Manual vs. Automatic Stubbing
	3.2.2. Automatic stubbing
	3.2.3. Pragma assert
	3.2.4. Volatile

	3.3. Advanced setup
	3.3.1. Reduce oranges step by step
	3.3.1.1. Vary the precision level
	3.3.1.2. Apply chosen coding rules
	3.3.1.3. Increase the number of red and green checks
	3.3.1.4. Apply some functional constraints to variables
	3.3.1.5. Tuning PolySpace parameters

	3.3.2. Variables
	3.3.2.1. Float rounding
	3.3.2.2. Expansion of sizes

	4. Working with results review
	4.1. Basics: prerequisite being able to review PolySpace results
	4.1.1. Propagation of colors
	4.1.2. What is the message and what does it mean?
	4.1.3. What is the Ada explanation?
	4.1.4. Review run time errors: Fix red errors
	4.1.5. Review dead code checks: why is grey code interesting?
	4.1.5.1. Functional bugs can be found in grey code
	4.1.5.2. Note on structural coverage

	4.1.6. How to conclude an orange review
	4.1.6.1. What is an orange?
	4.1.6.2. What are the different sources of oranges?
	4.1.6.3. How to determine the cause of one orange?

	4.2. Automatic Methodology
	4.3. How to find a maximum number of bugs within an hour reviewing oranges: selective orange review
	4.3.1. How?
	4.3.2. Why?
	4.3.3. In practice…
	4.3.4. Step by step
	4.3.5. Which category of checks should I choose first?
	4.3.6. Exhaustive orange review at unit phase
	4.3.6.1. Without coding rules
	4.3.6.2. With coding rules

	4.4. Coloured source code for Ada
	4.4.1. Non-Initialized Variable: NIV/NIVL
	4.4.1.1. Pragma interface/import
	4.4.1.2. Type access variables
	4.4.1.3. Address clauses

	4.4.2. Division by zero: ZDV
	4.4.3. Arithmetic Exceptions: EXCP
	4.4.4. Scalar and Float Underflow/Overflow : UOVFL
	4.4.5. Scalar and Float Overflow: OVFL
	4.4.6. Scalar and Float Underflow: UNFL
	4.4.7. Attributes check: COR
	4.4.8. Array length check: COR
	4.4.9. DIGITS value check: COR
	4.4.10. DELTA value length check: COR
	4.4.11. Static range and values check: COR
	4.4.12. Discriminant check: COR
	4.4.13. Component check: COR
	4.4.14. Dimension versus definition check: COR
	4.4.15. Aggregate versus definition check: COR
	4.4.16. Aggregate array length check: COR
	4.4.17. Sub-Aggregates dimension check: COR
	4.4.18. Characters check: COR
	4.4.19. Accessibility level on access type: COR
	4.4.20. Valid variable: COR
	4.4.21. Explicit dereference of a null pointer: COR
	4.4.22. Accessibility of a tagged type: COR
	4.4.23. Power Arithmetic: POW
	4.4.24. User Assertion: ASRT
	4.4.25. Non Terminations: Calls and Loops
	4.4.25.1. Non Termination of Call: NTC
	4.4.25.2. Non Termination of Call due to entry in tasks
	4.4.25.3. Known Non Termination of Call: k-NTC
	4.4.25.4. Non Termination of Loop: NTL
	4.4.25.5. Sqrt, sin, cos, and generic elementary functions

	4.4.26. Unreachable code: UNR
	4.4.27. Value on Assignment: VOA
	4.4.28. Inspection Points: IPT

	4.5. Advanced results review
	4.5.1. Purpose of -continue-with-red-error option
	4.5.2. Checks on procedure calls with default parameters
	4.5.3. _INIT_PROC procedures

	5. Get more from PolySpace: Insert it into your development process
	5.1. PolySpace usages
	5.2. Standard development process
	5.3. Rigorous development process: introducing tools and coding rules
	5.4. A quality/qualification approach
	5.5. Code acceptance criterion

	6. Advanced
	6.1. PolySpace setup
	6.1.1. Can an application without “main” be analysed?
	6.1.2. Modelling tasks, interruptions and events
	6.1.2.1. Scheduling model
	6.1.2.2. Modelling synchronous tasks
	6.1.2.3. Interruptions and asynchronous events/tasks
	6.1.2.4. Are interruptions maskable or preemptive by default?

	6.1.3. Shared variables
	6.1.3.1. Critical sections
	6.1.3.2. Mutual exclusion
	6.1.3.3. Access pattern
	6.1.3.4. Rendez vous
	6.1.3.5. Semaphores

	6.1.4. Miscellaneous
	6.1.4.1. Mailboxes
	6.1.4.2. Atomicity
	6.1.4.3. Priorities

	6.2. PolySpace results analysis
	6.2.1. Integration bug tracking
	6.2.2. How to find bugs in unprotected shared data
	6.2.3. Dataflow analysis
	6.2.4. Cost and benefits of an exhaustive orange review
	6.2.4.1. Costs and Benefits
	6.2.4.2. Method

	6.2.5. PolySpace analysis duration
	6.2.5.1. An ideal application size
	6.2.5.2. Why should there be an optimum size?
	6.2.5.3. By selecting a subset of code
	6.2.5.3.1. Subdivide according to data-flow
	6.2.5.3.2. Subdivide according to real-time characteristics
	6.2.5.3.3. Subdivide according to files

	6.2.5.4. What are the benefits of these methods?
	6.2.5.4.1. When the application is incomplete
	6.2.5.4.2. Considering the effects of application code size

	7. Options description
	7.1. GENERAL
	7.1.1. -prog program-name
	7.1.2. -date date
	7.1.3. -author author-name
	7.1.4. -verif-version verif-version
	7.1.5. -voa
	7.1.6. -keep-all-files
	7.1.7. -continue-with-red-error
	7.1.8. -continue-with-existing-host
	7.1.9. -allow-unsupported-linux
	7.1.10. -sources "files" or -sources-list-file file_name
	7.1.11. -extensions-for-spec-files and -ada-include-dir
	7.1.12. -results-dir directory
	7.1.13. -pre-analysis-command file or "command"
	7.1.14. -post-analysis-command file or "command"

	7.2. TARGET/COMPILER
	7.2.1. -target target-name
	7.2.2. -OS-target OperatingSystemTarget

	7.3. COMPLIANCE WITH STANDARDS
	7.3.1. -storage-unit number
	7.3.2. -base-type-directly-visible
	7.3.3. Permissiveness/Strictness
	7.3.3.1. -permissive
	7.3.3.2. -continue-with-in-out-niv
	7.3.3.3. -strict
	7.3.3.4. -no-automatic-stubbing
	7.3.3.5. -continue-with-all-niv

	7.4. POLYSPACE INNER SETTINGS
	7.4.1. -main main_subprogram_name
	7.4.2. -main-generator
	7.4.3. Stubbing
	7.4.3.1. -import-are-not-volatile
	7.4.3.2. -export-are-not-volatile
	7.4.3.3. -init-stubbing-vars-random
	7.4.3.4. -init-stubbing-vars-zero-or-random

	7.4.4. Assumptions
	7.4.4.1. -ignore-float-rounding
	7.4.4.2. -known-NTC proc1[,proc2[,...]]

	7.4.5. Others
	7.4.5.1. -orange-analyzer
	7.4.5.2. -extra-flags option-extra-flag
	7.4.5.3. -ada95-extra-flags extra-flag (Ada95 only)

	7.5. PRECISION
	7.5.1. -from verification-phase
	7.5.2. -to verification-phase
	7.5.3. -O(0-3)
	7.5.4. -modules-precision mod1:O(0-3)[,mod2:O(0-3)[,...]]
	7.5.5. -array-expansion-size number
	7.5.6. -path-sensitivity-delta number
	7.5.7. -variables-to-expand var1[,var2[,...]]
	7.5.8. -variable-expansion-depth number

	7.6. MULTITASKING (PolySpace Server only)
	7.6.1. -entry-points str1[,str2[,...]]
	7.6.2. -critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
	7.6.3. -temporal-exclusions-file file_name

	7.7. BATCH OPTIONS
	7.7.1. -server server_name_or_ip[:port_number]
	7.7.2. -h[elp]
	7.7.3. -v | -version
	7.7.4. -sources-list-file file_name

	7.8. COMPLETE EXAMPLES

	8. Appendix
	8.1. Glossary
	8.2. What is static verification?

